Modeling and Simulation Speed-Up of Plasma Actuators
Implementing Reconfigurable Hardware

Abbas Ebrahimi and Mohammad Zandsalimy
Sharif University of Technology, Tehran 11155-1639, Iran

The objective of the present study is to investigate the capability of field-programmable gate array hardware in
numerical simulation of a model of a dielectric barrier discharge plasma actuator to accelerate the calculations. The
reconfigurable hardware is designed such that it is possible to reprogram its architecture after manufacturing. This
provides the capability to design and implement various architectures for several applications. Two reconfigurable
chips are used in the present study, one of which consists of a programmable logic unit and a typical microprocessor.
This hybrid architecture makes the high performance of the reconfigurable hardware in custom computing and the
efficiency of the microprocessor in data flow control accessible. An automated design procedure is used for the design
of the reconfigurable hardware. Further, a finite difference representation of a phenomenological model of a plasma
actuator is derived and implemented on the field-programmable gate array hardware. The results are validated
against other numerical data, and the computational time is compared to different conventional processors. Using the
reconfigurable hardware results in up to 96 % computational time reduction compared to a recent Core i7 processor.

I. Introduction

NE of the most challenging problems in science and engineering

is the task of obtaining accurate low-latency solutions to the
governing equations of fluid mechanics [1]. Computational fluid
dynamics (CFD) has been known as a technique with massive floating-
point operations in most of these problems, requiring a fine high-
quality computational mesh as well as a sufficient number of iterations
to yield an accurate solution. As a result, even by employing extremely
advanced modern digital computers, the solution time of these
problems will still be significantly high [2]. Although nowadays CFD
is inexpensive relative to physical experiments, there is a great demand
for solution speed-up.

Modeling and simulation of dielectric barrier discharge (DBD)
plasma actuators using proper computational methodologies are an
example of such numerical calculations with high solution cost.
DBD plasma actuators are devices known for generating controllable
wall-bounded jet flow [3-5]. Having an accurate and efficient
computational model for simulating the actuator effect on the
flowfield is crucial. There are a number of such models developed for
simulating the underlying physics of ionization process and
calculating the actuator performance [6-8]. These computational
models include simplified models and first-principles-based models.
Simplified models are less complex representations of the plasma
physics and are often based on a phenomenological approach [9]. The
first-principles-based models are derived directly from the level of
established laws of physics and do not contain any assumptions such
as empirical models [10].

Several methods have been suggested and implemented for
reducing the computational time of PDEs that govern the fluid
dynamics problems (software and hardware methods). Optimization
of computer programs and the use of new and more advanced
numerical algorithms are used as software-centered methods of
computational time reduction. On the other side, the use of more
powerful processors or employing high-performance computing
systems are examples of hardware methods [11,12].

There has been a dramatic increase in employing new and more
powerful hardware for computational purposes in the past two
decades. One of the most studied hardware in this field is the graphics
processing unit (GPU). Phillips et al. [13] employed GPU clusters for
compressible flow computations using a finite-volume method.
Further, Ma et al. [14] implemented a GPU for the solution of
compressible flow problems using a meshless method and reached
over an order of magnitude speed-up. Stone and Davis [15]
investigated the performance and accuracy of solving stiff chemical
kinetics equations on a GPU and achieved over 20x speed-up
compared to traditional CPUs. The solution of the two-dimensional
(2-D) Boltzmann transport equation using the CUDA language and
an NVidia GPU was carried out by Priimak [16]. Xu et al. [17]
implemented high-order compact finite difference schemes for
complex grids on GPUs and attained 60% more efficiency in
computations. Thomas et al. [18] used a hybrid combination of
CPU and GPU and implemented a free-vortex method together
with an unsteady Reynolds-averaged Navier—Stokes solver for the
simulation of two-phase flow beneath a hovering rotor. In another
work, Liu et al. [19] proposed a method for the solution of CFD
problems on CPU + GPU platforms and evaluated their method with
the lid-driven cavity flow. Chan et al. [20] presented the algorithm for
efficient implementation of a high-order discontinuous Galerkin
method for the wave equation on a GPU. Moreover, Remacle et al.
[21] executed a spectral finite element scheme for the solution of
elliptic problems on unstructured grids on a GPU and demonstrated
solution speed-up. Tredak et al. [22] implemented a molecular
dynamics algorithm using reactive bond order empirical potential on
a single GPU and reached over 12 times the calculation speed of a
CPU. Most recently, Liang et al. [23] implemented the canonical
Monte Carlo simulation of Coulomb many-body systems on a GPU
and reached 440 times faster calculations. Despite numerous studies
on GPU acceleration of numerical computations, there still exists an
increasing interest for more powerful computational systems in the
scientific community.

Studies performed within the last decade demonstrate the promising
future of using field-programmable gate array (FPGA) hardware as an
alternative to conventional processors. An FPGA is an integrated
circuit which contains an array of logic blocks. The architecture and
internal wiring of this hardware can be reconfigured many times [24].
Complex circuits for various applications can be designed and
implemented using this electronic hardware. As a result, computers
with an FPGA-based processing unit are in the spotlight for numerical
simulations and CFD problems. This is due to the high efficiency of
FPGA-based processors in parallelizing at the hardware level for

http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.J056382&domain=pdf&date_stamp=2018-06-04

There are several studies in the literature reporting on different
digital applications [26-29] and computational purposes of FPGAs
[30-43]. By the significant increment of clock frequency as well as
logic block density, FPGAs can now be implemented as highly
flexible standalone computational processors [39,44]. In the
following, some of the most recent investigations on the latter
application of FPGAs are reviewed.

Andrés et al. [37] presented a brief study on the feasibility of using
FPGAs to accelerate CFD simulations. Sanchez-Roman et al. [38]
exhibited an FPGA-based accelerator to implement a cell-vertex
finite volume algorithm for solving the Euler equations. Further,
Sano et al. [39] evaluated the performance of an FPGA-based
computing system including multiple FPGAs implementing iterative
linear equation solvers and conducted a 2-D Laplace problem as a
benchmark on this platform. Later, they introduced a performance
model of a tightly coupled FPGA cluster to accelerate a lattice
Boltzmann method solver [45]. Liu et al. [40] published a framework
based on reconfigurable logic to implement a one-dimensional (1-D)
CFD model of a diesel fuel system.

Gan et al. [46] proposed a hybrid computing system (including
both FPGA and CPU) that made use of single and multiple FPGAs to
compute an upwind scheme for the Saint-Venant equations. Using
mixed precision calculations, they were able to build a fully pipelined
circuit using a high-level hardware design procedure. Also, they
reported a 100 times computational speed-up over a six-core CPU.
Dohi et al. [47] evaluated three-dimensional stencil computing on a
stream-based FPGA accelerator and implemented a heat conduction
problem as a benchmark to test the results. They achieved a
computational speed-up of six times faster than a multithreaded
conventional CPU.

Zhang et al. [48] indicated that existing approaches for FPGA
architecture design are inefficient due to underutilization of memory
bandwidth and logic resource on the reconfigurable hardware. To
conquer this problem, they proposed an analytical design procedure
using the roofline model [49] and achieved a peak performance of
61.62 GFLOPS while performing at 100 MHz. Recently, Nagasu
et al. [50] proposed a high-performance computing system for
simulating tsunami with an FPGA hardware, using a highly pipelined
architecture performing in a limited bandwidth. Also, in a recent
work by the authors of the present paper, the feasibility of the FPGA
hardware for accelerating the numerical solution of Laplace problem
as well as the 1-D Euler equation is studied, and a 20x speed-up is
achieved [51].

The main objective of this paper is the numerical modeling of the
plasma actuator and computational speed-up, using a reconfigurable
hardware with a high-level description language for the design
process. To the best of the authors’ knowledge, no report has been
found thus far modeling and simulating the plasma actuator using this
method. In the present research, the hardware structure and the
configuration methods of an FPGA are presented. Then, the
feasibility of this hardware for numerical computation applications is
studied. Moreover, the equations of a phenomenological model of the
DBD plasma actuator are solved using this hardware. The most
important factors in performance increment of numerical
computations are memory bandwidth and low latency of arithmetic
operations. Hence, various directives are used to reach the best
possible performing architecture and lowest computational latency.
Moreover, the numerical results of calculations are validated, and the
solution times of two FPGA chips are compared to the results of four
different conventional CPUs.

II. Reconfigurable Computing

There are two general hardware configurations to perform digital
computations. First is to use hardware that is designed for a specific
purpose and cannot be reconfigured after manufacturing such as
application-specific integrated circuits (ASICs). Every single ASIC
is designed to perform a specific and predetermined task; as aresult, it
is very fast and reliable at executing its own assignment. The second
method involves using a software-programmed microprocessor,
which is a far more flexible method than the previous one. Hardware

Fully Manual Manual & Automatic Fully Automatic

|GatefLevel Description| | Partitioning | | C/C++ Program |
1 1 1

| Technology Mapping | | Structure Definition | | Directive Deﬁmtlon
1

| Position & Route | | Technology I\'Iapping| |

1
| Compile to Netlist

Partltlomng |

| Position & Route |

Technology Mapping

Position & Route

Fig. 1 Different possible design flows for the configuration of FPGAs
(user has to perform the shaded levels).

application in this method is controlled by a software program.
Changing the software results in an application alteration. The most
obvious drawback of this flexibility is the lower performance of
hardware in computations than the first method.

The main objective of reconfigurable computing is to bridge the
gap between software and hardware, to be able to get the flexibility of
software as well as the performance of hardware at the same time
[52]. Reconfigurable hardware (such as FPGA) contains an array of
computational elements whose applications can be altered and
configured through a number of configuration bits. These elements,
which are sometimes called logic blocks, are connected together with
some reconfigurable connection wires and switches. As a result, it is
possible to construct various custom digital circuits by changing each
logic block’s application and the connection baseline. As mentioned
in Sec. I, the performances of some applications have been highly
elevated using reconfigurable computing.

Hardware configuration tools can exist in the form of manual
languages for the design process in which the user has to manually
adjust and introduce every single element and routing to the system. It
can also exist in the form of automatic software that interprets and
compiles a high-level representation of the design architecture to the
hardware-level language automatically. The latter is known as high-
level languages for hardware design. Using an automated design
procedure requires less effort from the user, but manually adjusting
the framework can result in a more optimized architecture for the
application [53]. Accordingly, different possible design flows for the
configuration of FPGAs are depicted in Fig. 1. Herein, an automatic
design flow is used for the FPGA configuration with manual
directives for a more optimized design.

A. Employed Hardware

In the present study, two different FPGA chips are employed for
reconfigurable computing and solution speed-up. Zyng-7020 from
the Zyng-7000 lineup [54] by Xilinx Co. is the first FPGA hardware
that contains both reprogrammable logic (FPGA hardware) and
processing system (microprocessor hardware) on the same chip. The
Zyng-7000 family products integrate a feature-rich dual-core or
single-core ARM Cortex-A9-based processing system and 28 nm
Xilinx programmable logic in a single device. The Zynq-7020 chip is
optimized for massive computations with low power consumption.
This FPGA is implemented on a board called “z-turn board”
manufactured by MYiR Co. The next FPGA is XC7VX690T from
the Virtex-7 lineup [55] by Xilinx Co. This chip only contains
reprogrammable logic and can be coupled with an external CPU
through high-speed PCle connections for a hybrid setup. The VC709
evaluation board provides a hardware environment for developing
and evaluating designs targeting this chip. This board provides
features common to many embedded processing systems, including a
dual DDR3 memory module, an eight-lane PCle interface, general
purpose 1/0O, and a UART interface. The latter FPGA is much more
powerful than the former, benefiting from 8x the logic cells and 9x the
DSP slices. Figures 2 and 3 show the top view of these boards
indicating some of the components.

-0 BUZZER
“BUTTON
USER
BUTTON
_BOOT
SELECT

z
<

e
|

_RESET

USB OTG 10/100/1000M
ETHO
USB UART ¢ © HDMI
512MBx2 4.
DDR3
TF CARD _5VDC
INPUT
) =
2 sTi¥ 8 58 ENER &
S f5iZE Zrfezt 2
£ 284 o oz =% o
S g® & g8 @«
S A o
Fig.2 z-turn board by MYiR Co.
USB UART FMC HPC DDR3 Memory User LED
PBI Parallel User Switch
\XADC NOR Flash
. Power
i / Switch
JTAG :
-\ 12V
Power
SFP User
Cages Button

SMA GTH i
PCle x8 Gen 3 Reference Clock EMBust
XCTVX690T SMA User -omnector
FPGA Clock

Fig.3 VC709 board by Xilinx Co.

Four different CPUs by Intel, an old-generation Core i7-740QM
[56], a Core i7-3770 K [57], a Core i7-4790 K [58], and a new-
generation Core 17-6950X [59], are used to compare the solution
times of various tests with the results obtained from the FPGAs.
These chips have multiple processing cores; thus, for the sake of
comparison, single- and multicore (without vectorization) as well as
fully vectorized performances are reported and compared to the
results of the reconfigurable hardware. The Core i7-740QM is a
mobile processor with four physical processing cores running at
1.73 GHz and has the lowest computational power of the four, with
only 23.44 GFLOPS. The Core i7-6950X is the most powerful CPU
here, with 10 processing cores, each running at 3.00 GHz generating
70 GFLOPS of computational power. Further, the single-core
performance of each chip is much lower than multicore performance.
These CPUs run at their maximum turbo frequency, which means a
higher performance per core than what is expected. The 17-740QM
runs at about 2.93 GHz, the i7-3770 K at 3.9 GHz, the i7-4790 K at
4.4 GHz, and the i7-6950X at 3.5 GHz with maximum turbo
frequency. Further, the latest chip has a high amount of cache (25 MB
to be exact), which makes it perfect for numerical calculation
purposes, not to mention its 20 processing threads. Table 1 presents a

Table1 Specifications of the processors in use

Maximum Processing speed,

Model frequency, GHz GFLOPS

Core i7-740QM CPU 2.93 23.44

Core i7-3770 K CPU 3.90 31.20

Core 17-4790 K CPU 4.40 35.20

Core i7-6950X CPU 3.50 70.00
Zyng-7020 FPGA 0.25 Architecture-dependent
XC7VX690T FPGA 0.81 Architecture-dependent

comparison of maximum frequency and processing speed between
the FPGAs and CPUs used in the present study.

B. Configuration Method

An automated design process recommended by Xilinx Co. is used
for reconfigurable hardware design in the present study. Three
different software modules are used in this method, all of them
optimized for the task, including Vivado, Vivado HLS, and Xilinx
SDK. Using Vivado HLS and starting with a code in C++, some
intellectual property (IP) blocks are produced and then packaged.
An IP block is a logical hardware description layout that includes a
number of inputs and outputs. These IP blocks are then transferred to
Vivado and connected together to form a fully functional electronic
circuit. An example of hardware design in Vivado for solving the
Laplace equation on the Zynq-7020 FPGA and the used IPs are
demonstrated in Fig. 4. Each one of the blocks has a special role and
function in the main architecture.

Hls_accel block is the solver of the Laplace equation that has been
developed via Vivado HLS and from a program written in C++. This
IP receives the initial conditions for the Laplace equation and then,
after completing the solution, sends out the results through the output
port. The AXI Timer block is an IP provided by Xilinx Co. to
calculate the exact clock rate of the chip during calculations of a
program. The main purpose of this block is to calculate the correct
solution time for each problem. Also, the ZYNQ7 Processing System
block can initiate and control the ARM processors available in the
Zyng-7020 chip. By means of this IP, it is possible to communicate
with the Hls_accel block through the high-bandwidth AXI
Interconnect connection block and control the input/output dataflow
of the reconfigurable unit. A full discussion about IP blocks can be
found in [60]. The final circuit design is then applied to the actual
hardware and debugged using Xilinx SDK.

III. Governing Equations for the Plasma Actuator

The main purpose of this study is to reduce the computation time
required for solving governing equations of the DBD plasma actuator
(a phenomenological model), using different types of reconfigurable
hardware. DBD plasma actuator is composed of two electrodes
separated by a dielectric material, usually glass, quartz, Kapton, or
ceramics. One of the electrodes is exposed to airflow connected to a
high-voltage power supply. The other electrode is enclosed inside the
dielectric layer and often grounded. A schematic of this actuator is
presented in Fig. 5. The DBD plasma actuator is often driven by a
high sinusoidal voltage 1-20 kV, 0.05-20 kHz. When the driving
voltage reaches a breakdown value, the actuator causes a weak
ionization of the air molecules. Charged particles in the vicinity of the
exposed electrode propagate along the dielectric surface (due to the
electric potential field) and transfer momentum to the surrounding
neutral particles of the air. The induced airflow will move from the
exposed electrode in the direction of the enclosed electrode [10].

However, a number of models to directly simulate the ionization
process do exist, and a numerical model of the plasma actuator can
effectively provide the data for a simplified model of the problem.
According to [61], the S-H model [62] has acceptable accuracy,
despite being a simplified model of the physics in question. The S-H
model allows for a control over the charge density distribution over
the enclosed electrode. In the following, the governing equations of
the original S-H model are presented.

Because the gas particles are weakly ionized in the plasma
generation process, Suzen et al. [62] assumed that the electric
potential is the superposition of the potential due to the external
electric field and the potential due to the net charge density. They also
assumed that the Debye length and the charge density above the
enclosed electrode are small. With further assumptions, Suzen and
Huang simplified Maxwell equations and expressed this problem
with two independent PDEs for the distributions of the electric
potential and the net charge density inside the plasma region as
follows:

Ve, V$) =0)

Concat
1 AXI B— B AXI & i
= |
: Interconnect # — Direct
f ' Memory Access ||
— Processor
]
] System Reset DR
“ His accel >
] e @
i (Pre-Production) R FIXED 10
> — =
= —
%: i AXI
L &
H ZYNQ7 & a
| ProcessingQSystcm T | —F e Interconnect
[1 Timer

Fig. 4 Block diagram of hardware designed to solve the Laplace equation on Zynq-7020.

wAirﬂow

—— Exposed Electrode |}

Dielectric Material
[Enclosed Electrode |

Plasma

AC Power Supply
Fig. 5 Schematic of a DBD plasma actuator.

V(e Vp) =" @)
d

where ¢ is the electric potential, 4, is the Debye length, p.. is the net
charge density, and e, is the relative permittivity of the medium.

A. Electric Potential Equation Discretization

A Cartesian nonuniform computational grid (Fig. 6) has been
implemented for the numerical solution of Eq. (1). This equation can
be expanded as

0~ 0 - op~ O _
(i ai) (G gi) o o
The nonuniform grid (x, y) is conformally mapped to a uniform

grid ({, i) using relations (4) and (3):

0 0o ono
2 _%0, M9)
ox 0xd{ oxon

Non-uniform grid

>
>

T

Mapping

—

0 _0ld dno
0 _ o Lo)
dy oyaC " ayon

According to Fig. 6, considering dn/dx = 0 and 0{/dy = 0 and
using Eqgs. (4) and (5), Eq. (3) can be rewritten as

oC e, oC o ag

2 2
6Cd¢+(0§) o¢

ox o ox o " oxracax o T \ox G’W
on de, on o *n o 2 2
Jn de, on ¢ e o ¢>+ . > —0 ©
dy on dy on 0y " ondy on dy " on?

Further simplification of Eq. (6) results in

o . o WO\ PP (on\2ap\
Aggt A te ((5) 0_5”(5) a_nz)_o @

in which

o (%Yo % L
€= (&) oc " ox“rotox

and

on\20 o
A, = Kl —’76‘,—}7
dy) on dy " ondy

An explicit scheme with first-order-accurate finite difference
discretization is used for the solution of Eq. (7); thus,

Uniform grid

Ui

¢

Fig. 6 Conformal mapping used for the numerical calculation of the plasma model.

4 1+1 ; ¢k+l A ”+1 ¢k+1
¢ AL " Ay
+e ag l+lj _2¢k+l + ¢l 1,j
ox NG
611 ,J+|_ k+]+¢z] 1
=0 8
" (ay) v ®

Rewriting Eq. (8) yields

¢k+1_ﬂ k ﬂ k
PN AN

()C 2¢1+1/+¢111 0772 /+l+¢z/1
e ((ax) AZ (07) Ive) ©

in which

A; A a\2 1 an\2 1
B="=4+""49 =) — 2y
INEPYR 6’((ax) 22 \oy) ap

Derivatives inside A, Ay, and B are discretized using the same
first-order-accurate finite difference method. These parameters are
always constant on every node of the computational grid. Thus, it is
acceptable to calculate them at the beginning of the numerical
solution and then continue the rest.

Numerical solution of Eq. (9) using the boundary conditions of
Fig. 7 yields the electric potential ¢ distribution in the domain.
Kapton is used as the dielectric material which its electrical
permittivity relative to air is considered to be 2.7. Obviously, for the
air side, we should use ¢, = 1. Conservation of the electric field
requires using a harmonic mean of ¢, and ¢, on the dielectric—air
interface. According to Suzen et al. [62] th1s harmomc mean value
can be computed using

€€,

€ = (10)
"€ (Axyn/AX) + €, (Axy [Axyy)

Parameters of this relation are shown in Fig. 8. The enclosed
electrode is grounded with ¢p = 0. Also, the electric potential on the
exposed electrode is an ac voltage with ¢(f) = P f(1). In this
relation, f(¢) is considered to be a sin wave function as follows:

f(t) = sinrwt) (11)

where @ is the frequency, and ¢,,,,, is the amplitude of the ac voltage
supply.

1m 10mm 0.5mm 10mm 1m
Y
Air Side;
—-10 On Outer Boundaries;

@ —0 1m
on

(ﬁ")(t) = ‘pmaxf(t) y

| Exposed Electrode x Erm = mEAN (Erl ? ETZ) ZZ 0.102mm

0.127mm
v

0.102mm
s
6=0

Dielectric Material; 1m

€y, = 2.7

Fig. 7 Computational domain and boundary conditions for Eq. (1)
(dimension scales are not correct).

Az /er, Axim/er,

Interface
Fig. 8 Permittivity on the interface.

B. Net Charge Density Equation Discretization

The same Cartesian nonuniform computational grid is used for the
solution of Eq. (2) as before. Using the same procedure as for the
potential equation (see Sec. III.A), Eq. (2) can be discretized as

A A,
A_é’p‘ﬁl.] + A_ﬂpt’”'

05\ 2 Pk +p 2Pk + P
e (B PP () P TP)
ox AC dy An

in which A, and A, are also the same as before, but

Aév A a¢ 2 1 oan 2] 1
B="4+""T49 =) =) —
INEUYRl 6’((ax) ar " (ay ar) T2

has a new term.

Numerical solution of Eq. (12) using the boundary conditions of
Fig. 9 yields the net charge density p,. distribution in the domain. This
time around, only the air side of the domain needs to be solved. The
normal gradient of p,. over the bottom wall is set to zero except for
the region above the enclosed electrode. On the outer boundaries,
it is assumed that p. = 0. Being a simplified model of the plasma
actuator, p. on the wall over the enclosed electrode is considered to be
in synchronization with the time variations of ¢(¢) (applied voltage)
[62], which means that

Bp k=
ij

p(.'U) ('x’ l) = plmilXG('x)f(l) (13)

in this equation, p, .y 1S the maximum allowable charge density in
the domain, f(#) is a sin function [Eq. (1L1)], and G(x) is a function to
describe the distribution of the plasma on the wall. A half-Gaussian
distribution of plasma on the wall over the enclosed electrode is
proposed as [3,63];

_ _ 2
G(x) = eXp(i(szz”)) (14)

in which g is the location of the maximum value, and ¢ determines the
rate of decay of G. The values of constant parameters required for the

1m 10mm 0.5mm 10mm 1m
f<—>t

Air Side;
€, = 1.0 pe=20

On Outer Boundaries;

1m

|
e _ 7 Peu(®t) 1 Ope _
on Y ion v
Exposed Electrode x | 0.102mm
|
I

Enclosed Electrode

Fig. 9 Computational domain and the boundary conditions for
Eq. (2) (dimension scales are not correct).

numerical solution are assumed to be ¢ =03, 1, =1 mm,
and p.max = 8 X 107 (C/m?).

IV. Results and Discussion

The governing equations of the plasma model are solved
numerically using different reconfigurable chips and CPUs. The
numerical solution is performed through an iterative procedure,
starting from an initial guess. Also, the results are validated with [62],
and the high-precision computational time is calculated.

A. Electric Potential

Numerical solution of Eq. (1) is conducted with the use of boundary
conditions of Fig. 7. The solution result for the contour of the
nondimensionalized ¢ in a 164 X 117 computational grid for single-
precision arithmetic is presented in Fig. 10. This solution was obtained
with 10,000 iterations of Eq. (9). The results achieved from FPGAs and
CPUs are exactly equal. In Fig. 11, the comparison of the results of ¢
from [62] and the present study, over three separate horizontal lines, are
presented. According to this plot, there is a good agreement between
results of the electric potential from both works. Atits worst, the results
from these two studies have a 5.36% difference.

Figure 12 illustrates the plot of computational time of the problem
versus mesh size, using all four CPUs with different data precision.
The computational time is calculated under three performance
conditions, i.e., single-core (without any optimization), multicore
(multithreaded with manual optimization), and fully vectorized (with

0.05

)
S
>
-0.05 .
-0.05 0 0.05 0.1
X [cm]
Fig. 10 Contour of ¢ in the numerical solution of Eq. (9).
l 2 T T T T [T T T T [T T T T [T T T T
: —_——————— y=-0.04 (Present) :
1] y=-0.04 (Suzen & Huang) |
L y=0 (Present) i
- @ y=0 (Suzen & Huang) 4
E~ o — — — — y=0.04 (Present) b
08 @, oL Y y=0.04 (Suzen & Huang) —
.o]
£ 06 -
=S = 4
0.4 — —
02 .
O L | | 1
-0.05 0 0.05 0.1 0.15

X [cm]
Fig. 11 Comparison of ¢ from [62] and the present study, on three
separate lines in the domain.

automatic optimization). Four different grids including G, (44 x 31),
G, (87 x61), G3 (123 x 88), and G4 (164 X 117) are used for the
numerical solution. As seen in Fig. 12, computational time increases
with grid size. Further, in all cases, the best and worst performances
are related to the Core 17-6950X and i7-740QM, respectively. Also,
the multicore performance of each CPU is higher than the single-core
as well as the fully vectorized results. The computational time in the
multicore case has been reduced up to 80% relative to the single-core
and up to 50% relative to the fully vectorized cases, for the Core i7-
6950X CPU. A spreadsheet of computational time results is available
as supplementary material for this paper.

Two compilers are used for the compilation process of the codes,
i.e., the GNU Compiler Collection (GCC) version 6.3.0 and the
Microsoft Visual C++ compiler (MSVC) version 19.10.25019 for
x64 architecture in Windows 10 operating system. Fully vectorized
results are conducted using the autovectorizer of both compilers
(i.e., —O3 and /O2 compiler flags for GCC and MSVC, respectively,
which result in the highest vectorization ratio possible). The
assembly listing file has been extracted using both compilers and
checked for the SIMD registers in use. In the case of automatic
vectorization, the machine code compiled on all CPUs (except for the
Core i17-740QM) contains Advanced Vector Extensions (AVX)
registers (YMMO-YMM15) without switching over to SSE registers
(XMMO-XMM15). This indicates successful vectorization with
AVX architecture by the compiler. The listing file generated
without automatic vectorization does not contain AVX registers.
A short copy of the assembly listing file with automatic vectorization
is available in the Appendix A.

Further, the multicore performance of each CPU is performed
using OpenMP application programming interface (API), which
enables us to explicitly conduct calculations on multiple threads at the
same time. The code is altered in a way to be able to run on multiple
threads, which in turn results in a highly parallel and fast executing
code. In this case, the raw multithreaded performance of the CPUs
(without autovectorization) is taken into account. In conclusion, with
the use of OpenMP API, the codes are manually parallelized in
contrast to autovectorization, in which the compiler automatically
vectorizes the code according to appropriate compiler flags.

Herein, the solution times for single- and double-precision data are
approximately the same. This is due to fact that, in current CPU
architecture, any operation is executed within a certain amount of
clock cycles regardless of the precision of the number [64,65],
although this is only true for the single-core results without any
optimization. In the case that all the loops within the code are
vectorized, AVX operations are capable of operating twice the
number of single-precision data as double precision in the same time
[66]. The small difference between solution time of single- and
double-precision data in the presented results indicates that not all of
the loops are vectorized. However, the speed-ups achieved and the
AVX registers employed (without switching over to SSE) in the
assembly listing of automatically generated vectorized codes reveal
that automatic vectorization has been successful to a certain extent.
Manually programming multithreaded codes with the highest
possible degree of parallelism results in almost the same latency as
the automatic vectorization. This indicates that the compiler has done
a genuine job of automatically vectorizing the code. Also, further
optimization of the codes in question is not possible due to the natural
loop data dependency of the used solution algorithm.

Figure 13 demonstrates the plot of computational time of the
problem versus mesh size, using the 17-6950X CPU and both
FPGAs with double-precision arithmetic. This figure depicts the
performance of FPGA hardware in computational speed-up. As
seen, XC7VX690T and Zyng-7020 FPGAs are the best and worst
performing, respectively. XC7VX690T FPGA is the most powerful
hardware for numerical calculations here and has reduced the
computational time up to 94, 90, 70, and 43% compared to Zynq-
7020 and 17-6950X single-core, fully vectorized, and multicore
cases, respectively. Although Zyng-7020 has 30% more latency
than the Core 17-6950X single-core case, it is currently 94 and 98%
cheaper than the 17-6950X CPU and VC709 board, respectively
[54.55.59].

10" = -
C —8— 740QM]
- —A—— 3770K]
- —y—— 4790K —
—Q0— 6950X —
10" = =
Q
£ B .
B
10° = -
G G, G G, i i i
[—
10 = Single-Core Multicore Fully Vectorized Single-Core Multicore Fully Vectorized o

Single Precision

Double Precision

Fig. 12 Computational time of Eq. (9) vs grid size using different CPUs.

10° v/// E
— 102 _
ZI0°E / :
Q - 3
£ C]
= N]
10" & E
= —— Zynq-7020 FPGA =
C —A—— XC7VX690T FPGA .
L 6950X CPU (Single-Core) —
6950X CPU (Multi-Core) -

6950X CPU (Fully Vectorized)

10°
G, G, G, G,
Grid size

Fig. 13 Computational time of Eq. (9) vs grid size for double-precision
arithmetic.

B. Net Charge Density

Numerical solution of Eq. (2) is performed with the use of
boundary conditions of Fig. 9. The contour of the nondimension-
alized p. in a 164 X 53 computational grid for single-precision
arithmetic is presented in Fig. 14. This solution is obtained with
10,000 iterations of Eq. (12) (the results achieved from FPGAs and
CPUs are exactly equal). In Fig. 15, the comparison of the results of
p. from [62] and the present study, on three separate horizontal lines,
is presented. According to this plot, there is a good agreement
between the results of charge density from both works. At its worst,
the results from these two studies have a 9.14% difference.

Figure 16 illustrates the computational time of the problem versus
mesh size, using all four CPUs with different data precision. The
computational time is calculated under three performance conditions,
i.e., single-core, multicore (multithreaded), and fully vectorized. Four
different grids including G (44 x 14), G, (87 x 27), G5 (123 X 40),
and G4 (164 x 53) are used for the numerical solution. As seen
in Fig. 16, computational time increases with grid size. Further,
in all cases, the best and worst performances are related to the

P. /pc max

0.05
e
9,
>
0 Exposed Electrode
[
-0.05 . ! P Ll
-0.05 0 0.05 0.1
X [cm]
Fig. 14 Contour of p. in the numerical solution of Eq. (12).
1.6 T T T T [T T T T [T T T T [T]
L y=0 (Present) 4
14 C] y=0 (Suzen & Huang) 7
L — — — — y=0.04 (Present) m
C @ y=0.04 (Suzen & Huang)]
12 ————— y=0.08 (Present) —
C o y=0.08 (Suzen & Huang)]
1 E _|
5 L i
g - i
o 0.8 j j
> C i
0.6 — -
04 -
02 [-
0k |
-0.05

X [em]

Fig. 15 Comparison of p. from [62] and the present study, on three
separate lines in the domain.

L —&— 740QM 7
B —A—— 3770K B
—v— 4790K 4

—0O— 6950X
10° | —
10° = —
ETE E
= B]

1

100 =G, G, G, G, : : : : —
- Single-Core Multicore Fully Vectorized Single-Core Multicore Fully Vectorized 1

Single Precision

Double Precision

Fig. 16 Computational time of Eq. (12) vs grid size using different CPUs.

Core 17-6950X and i7-740QM, respectively. Also, the multicore
performance of each CPU is higher than the single-core as well as the
fully vectorized results. The computational time in the multicore case
has been reduced up to 80% relative to the single-core and up to
67% relative to the fully vectorized cases for the Core 17-6950X CPU.
A spreadsheet of computational time results is available as
supplementary material for this paper.

Figure 17 demonstrates the plot of computational time of the
problem versus mesh size, using the 17-6950X CPU and both FPGAs
with double-precision arithmetic. This figure depicts the performance
of FPGA hardware in computational speed-up. As seen, XC7VX690T
FPGA and i7-6950X CPU (single-core case) are the best and worst
performing, respectively. XC7VX690T FPGA has reduced the
computational time up to 95, 96, 93, and 82% compared to Zynqg-7020
and i7-6950X single-core, fully vectorized, and multicore cases,
respectively. In this test, despite being the cheapest hardware, the
computational time result of Zyng-7020 is similar and slightly better
than the single-core performance of the i7-6950X CPU.

103 = —
10% £ E
El C]
= - _
E B 7
= | -
10" & E
- —8— 7Zynq-7020 FPGA 7
B —A— XC7VX690T FPGA 4

| 6950X CPU (Single-Core)

6950X CPU (Multicore)
100 ——— 6950X CPU (Fully Vectorized)
G, G, G; G,
Grid size

Fig.17 Computational time of Eq. (12) vs grid size for double-precision
arithmetic.

V. Scalability

According to the presented results, the use of FPGA can help
speed-up numerical calculations. The scalability of the presented
methodology using more powerful reconfigurable hardware for
complex CFD problems is studied in this section.

In case of the hybrid system containing both FPGA and CPU, the
program is partitioned into sections to be executed on each hardware
separately. Specific functions of software are used to control the
hardware application. Functions that are supposed to be implemented
in the reconfigurable array occupy different hardware area and
number of logical components, based on the configuration method.
Also, a higher number of configurable resources and more onboard
memory mean more area for the optimization and speed-up of
numerical calculations. Further, implementing the entire function in
the FPGA and minimizing delay in the circuit will increase the
performance of the system substantially. Considering these factors,
the target problems of the present paper are completely implemented
in the reconfigurable hardware, and the microprocessor only controls
the input/output of the FPGA.

There are 3600 DSP48Es, 866,400 flip-flops (FFs), and 433,200
total lookup tables (LUTs) available on the XC7VX690T chip. Full
implementation of the electric potential problem with double-
precision arithmetic on the XC7VX690T FPGA [Eq. (9)] with a
164 x 117 grid results in 38% DSP48E slice, 19% FF, and 94% LUT
usage. Also, full implementation of the net charge density problem
[Eq. (12)] on a 164 X 53 grid occupies 20% of DSP48Es, 7% of FFs,
and 35% of the total LUTs available. More complex problems
(possibly with larger domain size) will need more logic blocks and
reconfigurable area on the chip for a full implementation of the solver.
Take the electric potential problem with double-precision arithmetic
on a half-million node grid as an example. Complete implementation
of this problem (with a speed-up goal in mind) needs about 30,000
DSP48Es, 4 million FFs, and 10 million LUTs. Another trouble is the
allowable level of complexity of the governing equations for full
implementation on a certain FPGA. This depends on numerical
methods as well as hardware implementation procedure. One can
calculate the number of logical operations required for the solution of
the problem in question. Then, by using currently achieved clock
latency of these logical operations, the hardware requirement can be
estimated. In the following, three different methods are presented
for optimization of the solution of complex problems using the
reconfigurable hardware.

A. Partial Evaluation

Partial evaluation [67] is a process that is used to reduce the
required hardware resources through optimization based on the
known static inputs. An example of such cases is the constant
coefficients in the function. If an input to a multiplication function is a
constant number, the general multiplication can be replaced with a
series of summation operations with static length shifts
corresponding to the placement of ones in the binary form of that
static number [68]. This method of optimization can help reduce the
hardware footprint required for the circuit definition through
reducing the logical gates in use. Partial evaluation of DES
encryption circuits [69] and the partial evaluation of constant
multipliers and fixed polynomial division circuits [70] are other
examples of the application of this method.

B. Memory Allocation

There are two main types of memory available for a reconfigurable
processor: memory blocks integrated inside the chip and separate
memory units outside the chip. The integrated memory can be
accessed through very high-speed/throughput connection lines, and
it can reduce calculation latency substantially, although the size of
this storage is limited by manufacturing technology and physical chip
area. If there is not enough embedded memory for the application, we
have to use external storage units, which in turn can exist in a large
size but have lower speed/throughput. If there are multiple external
storage units available to the reconfigurable hardware, it is best to
store parallel variables on multiple units, such that they can be
accessed at the same time [71]. If embedded memory with the FPGA
is used, it is better to occupy each memory block with the variables
that are related to the nearest calculation unit on the FPGA. This is
done for the sake of reducing read and write operation latency.
Embedded storage can also be used as a logical operator as a bonus.

C. Parallelization

When a manual hardware definition language is used to specify the
circuit, the user defines the entire architecture and timings. As a
result, operations can be explicitly defined to be executed in parallel.
In the case of an automatic design tool, the user can help optimize the
circuit using compiler directives. In the former method, the user has to
mark the areas of the algorithm to be parallelized and assign each part
to a parallel calculation thread. A signal/wait method can be used to
synchronize calculation threads of this architecture [72]. Automatic
parallelization of the inner loops is another method to optimize the
calculations and is an attempt to use as most of the chip area as
possible. In this method, the compiler selects the most inner logical
loop for unrolling and parallel execution. This results in a highly
pipelined structure. This kind of optimization using automatic design
tools can be accessed through compiler directives. If inputs to the
current iteration depend on outputs of the last iteration, the outer
loops cannot be unrolled. However, there exist compilers that focus
on unrolling all of the loops [73].

VI. Conclusions

The main motivation of the present study is reducing the
computational time of a DBD plasma actuator model, using a
reconfigurable hardware. This model includes two equations, one for
the electric potential and the other for the net charge density in the
solution domain. The reconfigurable hardware used in the present
study includes a Zyng-7020 and an XC7VX690T manufactured by
Xilinx Co. A finite difference representation of the problem is derived
to be executed on the computing machine. An automated design
procedure is used for the design of the reconfigurable hardware. The
computational times using FPGAs are calculated and compared with
different CPUs. Using the reconfigurable hardware results in up to
96% computational time reduction compared to a Core i7-6950X
CPU. The scalability of the presented methodology is explored for
more complex problems.

Appendix A: Assembly Listing File Samples

Sample sections of the assembly listing file to indicate the
utilization of AVX registers for the electric potential problem for the
fully vectorized case (with highest optimization ratio) using both of
the compilers are presented here.

A.1. Microsoft Visual C++ Compiler

_TEXT
out$ = 160
A$ =168
B$ =176
count$ = 184

run_AVX_8@ @YAXPEATMat44@ @PEBT1@ IH@Z PROC
mov rax, Isp

push rbp

sub rsp, 144

vmovaps XMMWORD PTR [rax —24], xmm6

vmovaps XMMWORD PTR [rax —40], xmm?7

vmovaps XMMWORD PTR [rax — 56], xmm8

vmovaps XMMWORD PTR [rax — 72], xmm9

vmovaps XMMWORD PTR [rax — 88], xmm10

vmovaps XMMWORD PTR [rax — 104], xmml1

vmovaps XMMWORD PTR [rax — 120], xmml2

lea rbp, QWORD PTR [rax — 120]

and rbp, —-32

Xxor rlld, rlld

test r9d, r9d

jle $LN1@run_AVX_8

npad 14

$SLL3@run_AVX_8:

mov eax, DWORD PTR ?the_mask@ @3HA

SEGMENT

and eax, rlld
inc rl1d
movsxd rl0, eax
shl rl0, 6

vmovups ymml0, YMMWORD PTR [r10 + rdx]
vbroadcastf128 ymm0O, XMMWORD PTR [r10 + r8]
vmovups ymml2, YMMWORD PTR [r10 + rdx + 32]
vbroadcastf128 ymm6, XMMWORD PTR [r10 + r8 + 32]
vbroadcastf128 ymm5, XMMWORD PTR [r10 + r8 + 48]
vshufps ~ ymml, ymmlO, ymmlO, 85

vmovups ymm4, ymmO
vmovups ymmll, ymmO
vbroadcastf128 ymmO,
vmovups ymm?7, ymmO
vmulps ymm3, ymml, ymmO

vshufps ~ ymml, ymml0, ymmlO, 170

vshufps ~ ymm0O, ymml0, ymml0, O

vmulps ymm2, ymmO, ymm4

vmulps ymmO, ymml, ymmo6

vaddps ymm4, ymm3, ymm2

vaddps ymm3, ymm4, ymmO

vshufps ~ ymm2, ymmlO, ymml0, 255

vmulps ymml, ymm2, ymm5

vaddps ymmO, ymm3, ymml

vshufps ~ ymml, ymml2, ymml2, 0

vmulps ymm2, ymml, ymmll

vmovups YMMWORD PTR [r10 + rcx], ymmO

vshufps ~ ymmO, ymml2, ymml2, 85

vmulps ymm3, ymmO, ymm?7

vshufps ~ ymmO, ymml2, ymml2, 170

vaddps ymm4, ymm3, ymm2

vmulps ymml, ymmO, ymmo6

vshufps ~ ymm2, ymml2, ymml2, 255

vaddps ymm3, ymm4, ymml

vmulps ymm0, ymm2, ymmS5

vaddps ymml, ymm3, ymmO

vmovups YMMWORD PTR [r10 + rcx + 32], ymml1
cmp rlld, r9d

jl $LL3@run_AVX_8

$LN1@run_AVX_8:

Vzeroupper

lea rll, QWORD PTR [rsp + 144]

vmovaps xmm6, XMMWORD PTR [r11-16]

vmovaps xmm7, XMMWORD PTR [rsp + 112]

XMMWORD PTR [r10 + 18 + 16]

10

Appendix (Continued.)

vmovaps xmm8, XMMWORD PTR [r11-48]
vmovaps xmm9, XMMWORD PTR [r]11-64]
vmovaps xmml0, XMMWORD PTR [r11-80]
vmovaps xmmll, XMMWORD PTR [r11-96]
vmovaps xmml2, XMMWORD PTR [r11-112]

mov rsp, 11l
pop rbp
ret 0

run_AVX_8@ @YAXPEATMat44@ @PEBT1@1H@Z ENDP
_TEXT ENDS

A.2. GNU Compiler Collection

L21:

movl the_mask(%rip), %eax
andl Yr11d, %eax

Cltq

salq $6, %rax

leaq (%r8,%rax), %rl0

leaq (%rdx,%rax), Yerbx

addq Jorcx, Jorax

Vzeroupper

vmovups (%rbx), %ymmO0

addl $1, %rlld

vmovups 32(%rbx), %ymmé4

cmpl %rl1d, %1r9d

vshufps $0, %ymm0O, %ymm0, %ymm5
vbroadcastf128 (%r10), %ymm3

vshufps $85, %ymm0O, %ymm0, %ymm]l2
vbroadcastf128 16(%r10), %ymm9

vshufps $0, %ymm4, %ymmd4, %ymml0
vbroadcastf128 32 (%rl10), %ymm8

vshufps $85, %ymm4, %ymm4, %ymm2
vbroadcastf128 48(%r10), %ymm?7

vshufps $170, %ymmO, %ymmO, %ymmll
vshufps $255, %ymm0O, %ymm0, %ymm6
vshufps $170, %ymm4, %ymm4, %ymml
vshufps $255, %ymmd4, %ymm4, %ymmO
vmulps %ymm2, %ymm9, %ymm?2
vmulps %ymm5, %ymm3, %ymm4
vmulps %ymml2, %ymm9, %ymm5
vmulps %ymml0, %ymm3, %ymm3
vmulps %ymml, %ymm8, %ymml
vaddps %ymm5, %ymm4, %ymmS5
vmulps %ymmll, %ymm8, %ymm4
vaddps %ymm2, %ymm3, %ymm?2
vmulps %ymm6, %ymm7, %ymm6
vmulps %ymm0, %ymm7, %ymmO0
vaddps %ymm4, %ymmS5, %ymmS5
vaddps %ymml, %ymm2, %ymml
vaddps %ymm6, %ymm5, %ymmé4
vaddps %ymm0, %ymml, %ymmO
vmovups %oymm4, (%rax)

vmovups %ymm0, 32(%rax)

jne. L21

Vzeroupper

References

[1] Hoffmann, K. A., and Chiang, S. T., Computational Fluid Dynamics,
Vol. 1, Computational Fluid Dynamics, Engineering Education System,
Wichita, KS, 2000, pp. 1-2.

[2] Caughey, D., and Hafez, M., Frontiers of Computational Fluid
Dynamics 2006, Computational Fluid Dynamics Series, World
Scientific, Singapore, 2005, pp. 1-10.

[3] Enloe, C., McLaughlin, T. E., Van Dyken, R. D., Kachner, K., Jumper,
E. J., and Corke, T. C., “Mechanisms and Responses of a Single
Dielectric Barrier Plasma Actuator: Plasma Morphology,” AIAA
Journal, Vol. 42, No. 3, 2004, pp. 589-594.
doi:10.2514/1.2305

[4] Likhanskii, A. V., Shneider, M. N., Macheret, S. O., and Miles, R. B.,

“Modeling of Dielectric Barrier Discharge Plasma Actuator in Air,”
Journal of Applied Physics, Vol. 103, No. 5, 2008, Paper 053305.
doi:10.1063/1.2837890

(5]

[6

—

[7

—

(8]

(9]

[10]

[11]

[12]

[13

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Yoon, J.-S., and Han, J.-H., “One-Equation Modeling and Validation of
Dielectric Barrier Discharge Plasma Actuator Thrust,” Journal of
Physics D: Applied Physics, Vol. 47, No. 40, 2014, Paper 405202.
doi:10.1088/0022-3727/47/40/405202

Orlov, D., Corke, T., and Patel, M., “Electric Circuit Model for
Aerodynamic Plasma Actuator,” 44th AIAA Aerospace Sciences
Meeting and Exhibit, AIAA Paper 2006-1206, Jan. 2006.

Hall, K., Jumper, E., Corke, T., and McLaughlin, T., “Potential Flow
Model of a Plasma Actuator as a Lift Enhancement Device,” 43rd AIAA
Aerospace Sciences Meeting and Exhibit, AIAA Paper 2005-0783,
Jan. 2005.

Thomas, F. O., Corke, T. C., Igbal, M., Kozlov, A., and Schatzman, D.,
“Optimization of Dielectric Barrier Discharge Plasma Actuators for
Active Aerodynamic Flow Control,” AIAA Journal, Vol. 47, No. 9,
2009, pp. 2169-2178.

doi:10.2514/1.41588

Suzen, Y., Huang, G., and Ashpis, D., “Numerical Simulations of Flow
Separation Control in Low-Pressure Turbines Using Plasma Actuators,”
45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2007-
0937, Jan. 2007.

Singh, K. P., and Roy, S., “Force Approximation for a Plasma Actuator
Operating in Atmospheric Air,” Journal of Applied Physics, Vol. 103,
No. 1, 2008, Paper 013305.

Corrigan, A., Camelli, F. F,, Lhner, R., and Wallin, J., “Running
Unstructured Grid-Based CFD Solvers on Modern Graphics Hardware,”
International Journal for Numerical Methods in Fluids, Vol. 66, No. 2,
2011, pp. 221-229.

doi:10.1002/1d.v66.2

Dong, S., and Karniadakis, G. E., “Dual-Level Parallelism for
High-Order CFD Methods,” Parallel Computing, Vol. 30, No. 1, 2004,
pp. 1-20.

doi:10.1016/j.parco.2003.05.020

Phillips, E. H., Zhang, Y., Davis, R. L., and Owens, J. D., “Acceleration
of 2-D Compressible Flow Solvers with Graphics Processing Unit
Clusters,” Journal of Aerospace Computing, Information, and
Communication, Vol. 8, No. 8, 2011, pp. 237-249.
doi:10.2514/1.44909

Ma, Z., Wang, H., and Pu, S., “GPU Computing of Compressible Flow
Problems by a Meshless Method with Space-Filling Curves,” Journal of
Computational Physics, Vol. 263, 2014, pp. 113-135.
doi:10.1016/].jcp.2014.01.023

Stone, C. P,, and Davis, R. L., “Techniques for Solving Stiff Chemical
Kinetics on Graphical Processing Units,” Journal of Propulsion and
Power, Vol. 29, No. 4, 2013, pp. 764-773.

doi:10.2514/1.B34874

Priimak, D., “Finite Difference Numerical Method for the Superlattice
Boltzmann Transport Equation and Case Comparison of CPU(C) and
GPU(CUDA) Implementations,” Journal of Computational Physics,
Vol. 278, 2014, pp. 182-192.

doi:10.1016/}.jcp.2014.08.028

Xu, C., Deng, X., Zhang, L., Fang, J., Wang, G., Jiang, Y., Cao, W., Che,
Y., Wang, Y., Wang, Z., Liu, W., and Cheng, X., “Collaborating CPU
and GPU for Large-Scale High-Order CFD Simulations with Complex
Grids on the TianHe-1A Supercomputer,” Journal of Computational
Physics, Vol. 278, 2014, pp. 275-297.

doi:10.1016/j.jcp.2014.08.024

Thomas, S., Amiraux, M., and Baeder, J. D., “Modeling the Two-Phase
Flowfield Beneath a Hovering Rotor on Graphics Processing Units,”
AIAA Journal, Vol. 53, No. 8, 2015, pp. 2300-2320.
doi:10.2514/1.J053661

Liu, X., Zhong, Z., and Xu, K., “A Hybrid Solution Method for CFD
Applications on GPU-Accelerated Hybrid HPC Platforms,” Future
Generation Computer Systems, Vol. 56, 2016, pp. 759-765.
doi:10.1016/j.future.2015.08.002

Chan, J., Wang, Z., Modave, A., Remacle, J.-F., and Warburton, T.,
“GPU-Accelerated Discontinuous Galerkin Methods on Hybrid Meshes,”
Journal of Computational Physics, Vol. 318, 2016, pp. 142-168.
doi:10.1016/].jcp.2016.04.003

Remacle, J.-F., Gandham, R., and Warburton, T., “GPU Accelerated
Spectral Finite Elements on All-Hex Meshes,” Journal of Computa-
tional Physics, Vol. 324, 2016, pp. 246-257.
doi:10.1016/].jcp.2016.08.005

Tredak, P., Rudnicki, W. R., and Majewski, J. A., “Efficient
Implementation of the Many-Body Reactive Bond Order (REBO)
Potential on GPU,” Journal of Computational Physics, Vol. 321, 2016,
pp. 556-570.

doi:10.1016/1.jcp.2016.05.061

Liang, Y., Xing, X., and Li, Y., “A GPU-Based Large-Scale Monte Carlo
Simulation Method for Systems with Long-Range Interactions,”

http://dx.doi.org/10.2514/1.2305
http://dx.doi.org/10.2514/1.2305
http://dx.doi.org/10.2514/1.2305
http://dx.doi.org/10.1063/1.2837890
http://dx.doi.org/10.1063/1.2837890
http://dx.doi.org/10.1063/1.2837890
http://dx.doi.org/10.1088/0022-3727/47/40/405202
http://dx.doi.org/10.1088/0022-3727/47/40/405202
http://dx.doi.org/10.2514/1.41588
http://dx.doi.org/10.2514/1.41588
http://dx.doi.org/10.2514/1.41588
http://dx.doi.org/10.1002/fld.v66.2
http://dx.doi.org/10.1002/fld.v66.2
http://dx.doi.org/10.1002/fld.v66.2
http://dx.doi.org/10.1002/fld.v66.2
http://dx.doi.org/10.1016/j.parco.2003.05.020
http://dx.doi.org/10.1016/j.parco.2003.05.020
http://dx.doi.org/10.1016/j.parco.2003.05.020
http://dx.doi.org/10.1016/j.parco.2003.05.020
http://dx.doi.org/10.1016/j.parco.2003.05.020
http://dx.doi.org/10.1016/j.parco.2003.05.020
http://dx.doi.org/10.2514/1.44909
http://dx.doi.org/10.2514/1.44909
http://dx.doi.org/10.2514/1.44909
http://dx.doi.org/10.1016/j.jcp.2014.01.023
http://dx.doi.org/10.1016/j.jcp.2014.01.023
http://dx.doi.org/10.1016/j.jcp.2014.01.023
http://dx.doi.org/10.1016/j.jcp.2014.01.023
http://dx.doi.org/10.1016/j.jcp.2014.01.023
http://dx.doi.org/10.1016/j.jcp.2014.01.023
http://dx.doi.org/10.2514/1.B34874
http://dx.doi.org/10.2514/1.B34874
http://dx.doi.org/10.2514/1.B34874
http://dx.doi.org/10.1016/j.jcp.2014.08.028
http://dx.doi.org/10.1016/j.jcp.2014.08.028
http://dx.doi.org/10.1016/j.jcp.2014.08.028
http://dx.doi.org/10.1016/j.jcp.2014.08.028
http://dx.doi.org/10.1016/j.jcp.2014.08.028
http://dx.doi.org/10.1016/j.jcp.2014.08.028
http://dx.doi.org/10.1016/j.jcp.2014.08.024
http://dx.doi.org/10.1016/j.jcp.2014.08.024
http://dx.doi.org/10.1016/j.jcp.2014.08.024
http://dx.doi.org/10.1016/j.jcp.2014.08.024
http://dx.doi.org/10.1016/j.jcp.2014.08.024
http://dx.doi.org/10.1016/j.jcp.2014.08.024
http://dx.doi.org/10.2514/1.J053661
http://dx.doi.org/10.2514/1.J053661
http://dx.doi.org/10.2514/1.J053661
http://dx.doi.org/10.1016/j.future.2015.08.002
http://dx.doi.org/10.1016/j.future.2015.08.002
http://dx.doi.org/10.1016/j.future.2015.08.002
http://dx.doi.org/10.1016/j.future.2015.08.002
http://dx.doi.org/10.1016/j.future.2015.08.002
http://dx.doi.org/10.1016/j.future.2015.08.002
http://dx.doi.org/10.1016/j.jcp.2016.04.003
http://dx.doi.org/10.1016/j.jcp.2016.04.003
http://dx.doi.org/10.1016/j.jcp.2016.04.003
http://dx.doi.org/10.1016/j.jcp.2016.04.003
http://dx.doi.org/10.1016/j.jcp.2016.04.003
http://dx.doi.org/10.1016/j.jcp.2016.04.003
http://dx.doi.org/10.1016/j.jcp.2016.08.005
http://dx.doi.org/10.1016/j.jcp.2016.08.005
http://dx.doi.org/10.1016/j.jcp.2016.08.005
http://dx.doi.org/10.1016/j.jcp.2016.08.005
http://dx.doi.org/10.1016/j.jcp.2016.08.005
http://dx.doi.org/10.1016/j.jcp.2016.08.005
http://dx.doi.org/10.1016/j.jcp.2016.05.061
http://dx.doi.org/10.1016/j.jcp.2016.05.061
http://dx.doi.org/10.1016/j.jcp.2016.05.061
http://dx.doi.org/10.1016/j.jcp.2016.05.061
http://dx.doi.org/10.1016/j.jcp.2016.05.061
http://dx.doi.org/10.1016/j.jcp.2016.05.061

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Journal of Computational Physics, Vol. 338, 2017, pp. 252-268.
doi:10.1016/].jcp.2017.02.069

Kilts, S., Advanced FPGA Design: Architecture, Implementation, and
Optimization, Wiley, Hoboken, NJ, 2007, pp. 11-16.

Smith, W. D., and Schnore, A. R., “Towards an RCC-Based Accelerator
for Computational Fluid Dynamics Applications,” Journal of
Supercomputing, Vol. 30, No. 3, 2004, pp. 239-261.
doi:10.1023/B:SUPE.0000045211.07895.cb

Huang, W., Saxena, N., and McCluskey, E. J., “A Reliable LZ Data
Compressor on Reconfigurable Coprocessors,” Proceedings of the 2000
IEEE Symposium on Field-Programmable Custom Computing
Machines, IEEE Publ., Piscataway, NJ, 2000, pp. 249-258.

Crookes, D., Benkrid, K., Bouridane, A., Alotaibi, K., and Benkrid, A.,
“Design and Implementation of a High Level Programming Environment
for FPGA-Based Image Processing,” IEE Proceedings—Vision, Image
and Signal Processing, Vol. 147, No. 4, 2000, pp. 377-384.
doi:10.1049/ip-vis:20000579

Dick, C., and Harris, F.,, “FPGA Signal Processing Using Sigma-Delta
Modulation,” IEEE Signal Processing Magazine, Vol. 17, No. 1, 2000,
pp- 20-35.

doi:10.1109/79.814644

Asano, S., Maruyama, T., and Yamaguchi, Y., “Performance Comparison
of FPGA, GPU and CPU in Image Processing,” Proceedings of the
2009 International Conference on Field Programmable Logic and
Applications, IEEE Publ., Piscataway, NJ, 2009, pp. 126-131.
doi:10.1109/FPL..2009.5272532

Hauser, T., “A Flow Solver for a Reconfigurable FPGA-Based
Hypercomputer,” 43rd AIAA Aerospace Sciences Meeting and Exhibit,
ATAA Paper 2005-1382, Jan. 2005.

doi:10.2514/6.2005-1382

Nunez, R., Gonzalez, J., and Camberos, J., “Large-Scale Numerical
Solution of Partial Differential Equations with Reconfigurable
Computing,” 18th AIAA Computational Fluid Dynamics Conference,
AIAA Paper 2007-4085, June 2007.

doi:10.2514/6.2007-4085

Sano, K., lizuka, T., and Yamamoto, S., “Systolic Architecture for
Computational Fluid Dynamics on FPGAs,” Proceedings of the 15th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, IEEE Publ., Piscataway, NJ, 2007, pp. 107-116.
doi:10.1109/FCCM.2007.20

Morishita, H., Osana, Y., Fujita, N., and Amano, H., “Exploiting
Memory Hierarchy for a Computational Fluid Dynamics Accelerator on
FPGAS,” Proceedings of the 2008 International Conference on ICECE
Technology, IEEE Publ., Piscataway, NJ, 2008, pp. 193-200.
doi:10.1109/FPT.2008.4762383

Sun, J., Peterson, G. D., and Storaasli, O. O., “High-Performance
Mixed-Precision Linear Solver for FPGAs,” IEEE Transactions on
Computers, Vol. 57, No. 12, 2008, pp. 1614-1623.
doi:10.1109/TC.2008.89

Andrés, E., Carreras, C., Caffarena, G., Molina, M. D. C., Nieto-
Taladriz, O., and Palacios, F., “A Methodology for CFD Acceleration
Through Reconfigurable Hardware,” 46th AIAA Aerospace Sciences
Meeting and Exhibit, AIAA Paper 2008-0481, Jan. 2008.
doi:10.2514/6.2008-481

Inakagata, K., Morishita, H., Osana, Y., Fujita, N., and Amano, H.,
“Modularizing Flux Limiter Functions for a Computational Fluid
Dynamics Accelerator on FPGAs,” Proceedings of the 2009
International Conference on Field Programmable Logic and
Applications, IEEE Publ., Piscataway, NJ, 2009, pp. 654—657.
doi:10.1109/FPL.2009.5272347

Andrés, E., Widhalm, M., and Caloto, A., “Achieving High Speed CFD
Simulations: Optimization, Parallelization, and FPGA Acceleration for
the Unstructured DLR TAU Code,” 47th AIAA Aerospace Sciences
Meeting, AIAA Paper 2009-0759, Jan. 2009.

doi:10.2514/6.2009-759

Sanchez-Roman, D., Sutter, G., Lopez-Buedo, S., Gonzalez, 1., Gomez-
Arribas, F. J., and Aracil, J., “An Euler Solver Accelerator in FPGA for
Computational Fluid Dynamics Applications,” Proceedings of the 2011
Southern Conference on Programmable Logic, IEEE Publ., Piscataway,
NJ, 2011, pp. 149-154.

doi:10.1109/SPL..2011.5782640

Sano, K., Hatsuda, Y., and Yamamoto, S., “Performance Evaluation of
FPGA-Based Custom Accelerators for Iterative Linear-Equation
Solvers,” 20th AIAA Computational Fluid Dynamics Conference, AIAA
Paper 2011-3223, June 2011.

doi:10.2514/6.2011-3223

Liu, I, Lee, E. A., Viele, M., Wang, G., and Andrade, H.,
“A Heterogeneous Architecture for Evaluating Real-Time One-
Dimensional Computational Fluid Dynamics on FPGAS,” Proceedings

[41]

[42]

[43

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54

[55]

[56]

[57]

[58]

11

of the 2012 IEEE 20th Annual International Symposium on
Field-Programmable Custom Computing Machines, 1EEE Publ.,
Piscataway, NJ, 2012, pp. 125-132.

doi:10.1109/FCCM.2012.31

Constantinides, G., Kinsman, A., and Nicolici, N., “Numerical Data
Representations for FPGA-Based Scientific Computing,” IEEE Design
& Test of Computers, Vol. 28, No. 4, 2011, pp. 8-17.
doi:10.1109/MDT.2011.48

Bleris, L. G., Vouzis, P. D., Arnold, M. G., and Kothare, M. V.,
“A Co-Processor FPGA Platform for the Implementation of Real-Time
Model Predictive Control,” Proceedings of the American Control
Conference, 2006, IEEE Publ., Piscataway, NJ, p. 6.

Sano, K., Hatsuda, Y., and Yamamoto, S., “Multi-FPGA Accelerator for
Scalable Stencil Computation with Constant Memory Bandwidth,”
IEEE Transactions on Parallel and Distributed Systems, Vol. 25, No. 3,
2014, pp. 695-705.

doi:10.1109/TPDS.2013.51

Lin, Y., Wang, F., Zheng, X., Gao, H., and Zhang, L., “Monte Carlo
Simulation of the Ising Model on FPGA,” Journal of Computational
Physics, Vol. 237, March 2013, pp. 224-234.
doi:10.1016/.jcp.2012.12.005

Kono, Y., Sano, K., and Yamamoto, S., “Scalability Analysis of
Tightly-Coupled FPGA-Cluster for Lattice Boltzmann Computation,”
Proceedings of the 22nd International Conference on Field
Programmable Logic and Applications, IEEE Publ., Piscataway, NJ,
2012, pp. 120-127.

Gan, L., Fu, H., Luk, W., Yang, C., Xue, W., Huang, X., Zhang, Y., and
Yang, G., “Accelerating Solvers for Global Atmospheric Equations
Through Mixed-Precision Data Flow Engine,” Proceedings of the 23rd
International Conference on Field Programmable Logic and
Applications, IEEE Publ., Piscataway, NJ, 2013, pp. 1-6.

Dohi, K., Fukumoto, K., Shibata, Y., and Oguri, K., “Performance
Modeling and Optimization of 3-D Stencil Computation on a Stream-
Based FPGA Accelerator,” Proceedings of the 2013 International
Conference on Reconfigurable Computing and FPGAs, IEEE Publ.,
Piscataway, NJ, 2013, pp. 1-6.

Zhang, C., Li, P, Sun, G., Guan, Y., Xiao, B., and Cong, J., “Optimizing
FPGA-Based Accelerator Design for Deep Convolutional Neural
Networks,” Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Assoc. for
Computing Machinery, New York, 2015, pp. 161-170.

Williams, S., Waterman, A., and Patterson, D., “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Communica-
tions of the ACM, Vol. 52, No. 4, 2009, pp. 65-76.
doi:10.1145/1498765

Nagasu, K., Sano, K., Kono, F.,, and Nakasato, N., “FPGA-Based
Tsunami Simulation: Performance Comparison with GPUS, and
Roofline Model for Scalability Analysis,” Journal of Parallel and
Distributed Computing, Vol. 106, Supplement C, 2017, pp. 153-169.
doi:10.1016/].jpdc.2016.12.015

Ebrahimi, A., and Zandsalimy, M., “Evaluation of FPGA Hardware as a
New Approach for Accelerating the Numerical Solution of CFD
Problems,” IEEE Access, Vol. 5, May 2017, pp. 9717-9727.
doi:10.1109/ACCESS.2017.2705434

Hartenstein, R., “A Decade of Reconfigurable Computing: A
Visionary Retrospective,” Proceedings of the Conference on Design,
Automation and Test in Europe, IEEE Publ., Piscataway, NJ, 2001,
pp. 642-649.

Tessier, R., Pocek, K., and DeHon, A., “Reconfigurable Computing
Architectures,” Proceedings of the IEEE, Vol. 103, No. 3, 2015,
pp- 332-354.

doi:10.1109/JPROC.2014.2386883

“Zyng-7000 FPGA Family,” Xilinx, Inc., San Jose, CA, https://www.
xilinx.com/products/silicon-devices/soc/zyng-7000.html [retrieved
1 May 2017].

“Virtex-7 FPGA Family,” Xilinx, Inc., San Jose, CA, https://www.xilinx.
com/products/silicon-devices/fpga/virtex-7.html [retrieved 1 May 2017].
“Intel Core i7-740QM Processor (6M Cache, 1.73 GHz) Product
Specifications,” Intel Corporation, San Jose, CA, https://ark.intel.com/
products/49024/Intel-Core-i7-740QM-Processor-6M-cache-1_73-GHz
[retrieved 1 May 2017].

“Intel Core i7-3770 K Processor (8M Cache, up to 3.90 GHz) Product
Specifications,” Intel Corporation, San Jose, CA, https://ark.intel.com/
products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3
90-GHz [retrieved 1 May 2017].

“Intel Core i7-4790 K Processor (8M Cache, up to 4.40 GHz) Product
Specifications,” Intel Corporation, San Jose, CA, https://ark.intel.com/
products/80807/Intel-Core-i7-4790K -Processor-8M-Cache-up-to-4
40-GHz [retrieved 1 May 2017].

http://dx.doi.org/10.1016/j.jcp.2017.02.069
http://dx.doi.org/10.1016/j.jcp.2017.02.069
http://dx.doi.org/10.1016/j.jcp.2017.02.069
http://dx.doi.org/10.1016/j.jcp.2017.02.069
http://dx.doi.org/10.1016/j.jcp.2017.02.069
http://dx.doi.org/10.1016/j.jcp.2017.02.069
http://dx.doi.org/10.1023/B:SUPE.0000045211.07895.cb
http://dx.doi.org/10.1023/B:SUPE.0000045211.07895.cb
http://dx.doi.org/10.1023/B:SUPE.0000045211.07895.cb
http://dx.doi.org/10.1023/B:SUPE.0000045211.07895.cb
http://dx.doi.org/10.1023/B:SUPE.0000045211.07895.cb
http://dx.doi.org/10.1049/ip-vis:20000579
http://dx.doi.org/10.1049/ip-vis:20000579
http://dx.doi.org/10.1109/79.814644
http://dx.doi.org/10.1109/79.814644
http://dx.doi.org/10.1109/79.814644
http://dx.doi.org/10.1109/FPL.2009.5272532
http://dx.doi.org/10.1109/FPL.2009.5272532
http://dx.doi.org/10.1109/FPL.2009.5272532
http://dx.doi.org/10.1109/FPL.2009.5272532
http://dx.doi.org/10.2514/6.2005-1382
http://dx.doi.org/10.2514/6.2005-1382
http://dx.doi.org/10.2514/6.2005-1382
http://dx.doi.org/10.2514/6.2007-4085
http://dx.doi.org/10.2514/6.2007-4085
http://dx.doi.org/10.2514/6.2007-4085
http://dx.doi.org/10.1109/FCCM.2007.20
http://dx.doi.org/10.1109/FCCM.2007.20
http://dx.doi.org/10.1109/FCCM.2007.20
http://dx.doi.org/10.1109/FCCM.2007.20
http://dx.doi.org/10.1109/FPT.2008.4762383
http://dx.doi.org/10.1109/FPT.2008.4762383
http://dx.doi.org/10.1109/FPT.2008.4762383
http://dx.doi.org/10.1109/FPT.2008.4762383
http://dx.doi.org/10.1109/TC.2008.89
http://dx.doi.org/10.1109/TC.2008.89
http://dx.doi.org/10.1109/TC.2008.89
http://dx.doi.org/10.1109/TC.2008.89
http://dx.doi.org/10.2514/6.2008-481
http://dx.doi.org/10.2514/6.2008-481
http://dx.doi.org/10.2514/6.2008-481
http://dx.doi.org/10.1109/FPL.2009.5272347
http://dx.doi.org/10.1109/FPL.2009.5272347
http://dx.doi.org/10.1109/FPL.2009.5272347
http://dx.doi.org/10.1109/FPL.2009.5272347
http://dx.doi.org/10.2514/6.2009-759
http://dx.doi.org/10.2514/6.2009-759
http://dx.doi.org/10.2514/6.2009-759
http://dx.doi.org/10.1109/SPL.2011.5782640
http://dx.doi.org/10.1109/SPL.2011.5782640
http://dx.doi.org/10.1109/SPL.2011.5782640
http://dx.doi.org/10.1109/SPL.2011.5782640
http://dx.doi.org/10.2514/6.2011-3223
http://dx.doi.org/10.2514/6.2011-3223
http://dx.doi.org/10.2514/6.2011-3223
http://dx.doi.org/10.1109/FCCM.2012.31
http://dx.doi.org/10.1109/FCCM.2012.31
http://dx.doi.org/10.1109/FCCM.2012.31
http://dx.doi.org/10.1109/FCCM.2012.31
http://dx.doi.org/10.1109/MDT.2011.48
http://dx.doi.org/10.1109/MDT.2011.48
http://dx.doi.org/10.1109/MDT.2011.48
http://dx.doi.org/10.1109/MDT.2011.48
http://dx.doi.org/10.1109/TPDS.2013.51
http://dx.doi.org/10.1109/TPDS.2013.51
http://dx.doi.org/10.1109/TPDS.2013.51
http://dx.doi.org/10.1109/TPDS.2013.51
http://dx.doi.org/10.1016/j.jcp.2012.12.005
http://dx.doi.org/10.1016/j.jcp.2012.12.005
http://dx.doi.org/10.1016/j.jcp.2012.12.005
http://dx.doi.org/10.1016/j.jcp.2012.12.005
http://dx.doi.org/10.1016/j.jcp.2012.12.005
http://dx.doi.org/10.1016/j.jcp.2012.12.005
http://dx.doi.org/10.1145/1498765
http://dx.doi.org/10.1145/1498765
http://dx.doi.org/10.1016/j.jpdc.2016.12.015
http://dx.doi.org/10.1016/j.jpdc.2016.12.015
http://dx.doi.org/10.1016/j.jpdc.2016.12.015
http://dx.doi.org/10.1016/j.jpdc.2016.12.015
http://dx.doi.org/10.1016/j.jpdc.2016.12.015
http://dx.doi.org/10.1016/j.jpdc.2016.12.015
http://dx.doi.org/10.1109/ACCESS.2017.2705434
http://dx.doi.org/10.1109/ACCESS.2017.2705434
http://dx.doi.org/10.1109/ACCESS.2017.2705434
http://dx.doi.org/10.1109/ACCESS.2017.2705434
http://dx.doi.org/10.1109/JPROC.2014.2386883
http://dx.doi.org/10.1109/JPROC.2014.2386883
http://dx.doi.org/10.1109/JPROC.2014.2386883
http://dx.doi.org/10.1109/JPROC.2014.2386883
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://ark.intel.com/products/49024/Intel-Core-i7-740QM-Processor-6M-cache-1_73-GHz
https://ark.intel.com/products/49024/Intel-Core-i7-740QM-Processor-6M-cache-1_73-GHz
https://ark.intel.com/products/49024/Intel-Core-i7-740QM-Processor-6M-cache-1_73-GHz
https://ark.intel.com/products/49024/Intel-Core-i7-740QM-Processor-6M-cache-1_73-GHz
https://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
https://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
https://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
https://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
https://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
https://ark.intel.com/products/80807/Intel-Core-i7-4790K-Processor-8M-Cache-up-to-4_40-GHz
https://ark.intel.com/products/80807/Intel-Core-i7-4790K-Processor-8M-Cache-up-to-4_40-GHz
https://ark.intel.com/products/80807/Intel-Core-i7-4790K-Processor-8M-Cache-up-to-4_40-GHz
https://ark.intel.com/products/80807/Intel-Core-i7-4790K-Processor-8M-Cache-up-to-4_40-GHz
https://ark.intel.com/products/80807/Intel-Core-i7-4790K-Processor-8M-Cache-up-to-4_40-GHz

12

[59] “Intel Core i7-6950X Processor Extreme Edition (25M Cache, up to
3.50 GHz) Product Specifications,” Intel Corporation, San Jose, CA,
https://ark.intel.com/products/94456/Intel-Core-i7-6950X-Processor-
Extreme-Edition-25M-Cache-up-to-3_50-GHz [retrieved 1 May 2017].

[60] “Intellectual Property,” Xilinx, Inc., San Jose, CA, https://www.xilinx.
com/products/intellectual-property.html [retrieved 1 May 2017].

[61] Laten,J. B., and LeBeau, R. P., “Improving the Performance of a Plasma
Actuator Model for DBD and Multi-Encapsulated Electrode Actuators,”
55th AIAA Aerospace Sciences Meeting, AIAA Paper 2017-1808,2017.

[62] Suzen,Y.,Huang, G., Jacob, J., and Ashpis, D., “Numerical Simulations
of Plasma Based Flow Control Applications,” 35th AIAA Fluid
Dynamics Conference and Exhibit, AIAA Paper 2005-4633, June 2005.

[63] Enloe, C. L., McLaughlin, T., Font, G. I, and Baughn, J. W,
“Parameterization of Temporal Structure in the Single-Dielectric-
Barrier Aerodynamic Plasma Actuator,” AIAA Journal, Vol. 44, No. 6,
2006, pp. 1127-1136.
doi:10.2514/1.16297

[64] Hennessy, J., and Patterson, D., Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Series in Computer Architecture and
Design, Elsevier Science, Burlington, MA, 2011, pp. 520-575.

[65] Silc, J., Robic, B., and Ungerer, T., Processor Architecture: From
Dataflow to Superscalar and Beyond, Springer, Berlin, 2012,
pp- 206-230.

[66] Lomont, C., Introduction to Intel Advanced Vector Extensions, Intel
Corporation, Santa Clara, CA, June 2011, https:/software.intel.
com/en-us/articles/introduction-to-intel-advanced-vector-extensions
[1 May 2017].

[67] Prakash, A. R., and Kirubaveni, S., “Performance Evaluation of FFT
Processor Using Conventional and Vedic Algorithm,” Proceedings of
the 2013 IEEE International Conference on Emerging Trends in
Computing, Communication and Nanotechnology, 1EEE Publ.,
Piscataway, NJ, 2013, pp. 89-94.
doi:10.1109/ICE-CCN.2013.6528470

[68] Nedjah, N., and de Macedo Mourelle, L., “Reconfigurable Hardware
Implementation of Montgomery Modular Multiplication and Parallel
Binary Exponentiation,” Proceedings Euromicro Symposium on Digital
System Design. Architectures, Methods and Tools, 1IEEE Publ.,
Piscataway, NJ, 2002, pp. 226-233.
doi:10.1109/DSD.2002.1115373

[69] Leonard, J., and Mangione-Smith, W. H., A Case Study of Partially
Evaluated Hardware Circuits: Key-Specific DES, Springer, Berlin,
1997, pp. 151-160.
doi:10.1007/3-540-63465-7 220

[70] Payne, R., Run-Time Parameterised Circuits for the Xilinx XC6200,
Springer, Berlin, 1997, pp. 161-172.
doi:10.1007/3-540-63465-7 221

[71] Gokhale, M. B., and Stone, J. M., “Automatic Allocation of Arrays to
Memories in FPGA Processors with Multiple Memory Banks,”
Proceedings of the 7th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, IEEE Publ., Piscataway,
NJ, 1999, pp. 63-69.
doi:10.1109/FPGA.1999.803668

[72] Cronquist, D. C., Franklin, P., Berg, S. G., and Ebeling, C., “Specifying
and Compiling Applications for Rapid,” Proceedings. IEEE Symposium
on FPGAs for Custom Computing Machines, IEEE Publ., Piscataway,
NJ, 1998, pp. 116-125.
doi:10.1109/FPGA.1998.707889

[73] Goldstein, S. C., Schmit, H., Budiu, M., Cadambi, S., Moe, M., and
Taylor, R. R., “Piperench: A Reconfigurable Architecture and
Compiler,” Computer, Vol. 33, No. 4, 2000, pp. 70-77.
doi:10.1109/2.839324

https://ark.intel.com/products/94456/Intel-Core-i7-6950X-Processor-Extreme-Edition-25M-Cache-up-to-3_50-GHz
https://ark.intel.com/products/94456/Intel-Core-i7-6950X-Processor-Extreme-Edition-25M-Cache-up-to-3_50-GHz
https://ark.intel.com/products/94456/Intel-Core-i7-6950X-Processor-Extreme-Edition-25M-Cache-up-to-3_50-GHz
https://ark.intel.com/products/94456/Intel-Core-i7-6950X-Processor-Extreme-Edition-25M-Cache-up-to-3_50-GHz
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
http://dx.doi.org/10.2514/1.16297
http://dx.doi.org/10.2514/1.16297
http://dx.doi.org/10.2514/1.16297
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
http://dx.doi.org/10.1109/ICE-CCN.2013.6528470
http://dx.doi.org/10.1109/ICE-CCN.2013.6528470
http://dx.doi.org/10.1109/ICE-CCN.2013.6528470
http://dx.doi.org/10.1109/ICE-CCN.2013.6528470
http://dx.doi.org/10.1109/DSD.2002.1115373
http://dx.doi.org/10.1109/DSD.2002.1115373
http://dx.doi.org/10.1109/DSD.2002.1115373
http://dx.doi.org/10.1109/DSD.2002.1115373
http://dx.doi.org/10.1007/3-540-63465-7_220
http://dx.doi.org/10.1007/3-540-63465-7_220
http://dx.doi.org/10.1007/3-540-63465-7_221
http://dx.doi.org/10.1007/3-540-63465-7_221
http://dx.doi.org/10.1109/FPGA.1999.803668
http://dx.doi.org/10.1109/FPGA.1999.803668
http://dx.doi.org/10.1109/FPGA.1999.803668
http://dx.doi.org/10.1109/FPGA.1999.803668
http://dx.doi.org/10.1109/FPGA.1998.707889
http://dx.doi.org/10.1109/FPGA.1998.707889
http://dx.doi.org/10.1109/FPGA.1998.707889
http://dx.doi.org/10.1109/FPGA.1998.707889
http://dx.doi.org/10.1109/2.839324
http://dx.doi.org/10.1109/2.839324
http://dx.doi.org/10.1109/2.839324

