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Problem

The 2 dimensional incompressible, laminar, Navier-Stokes equations are solved
on a regular Cartesian numerical grid. The problem is the famous lid driven
square cavity at different mesh size and Reynolds numbers. Space discretization
is second order accurate and implicit Euler method of time advancing is utilized
for integration in time. Artificial compressibility method is used to couple the
momentum equations and the continuity equation. These equations can be
written in matrix form as Eq. 1 with the solution and flux vectors as in Eq. 2.
In all of my simulations, the convergence criteria is for pressure which should
be less than 10−10. Two high order functions are utilized for interpolations,
quadratic and cubic interpolations.
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1 General Validation

1.1 Correctness of residual

Second order centered fluxes are used to compute the flux integrals. The equa-
tion for flux integration on the right face of each cell is presented as Eqs. 3
and 4. Flux integration is carried out on a 1 × 1 square. This calculation is
compared through L2 norm of error of each term in the solution vector with an
exact solution for the initial data presented in Eq. 5. The exact flux integral
for this initial conditions is presented in Eq. 6. The variables in this equation
are defined in Eq. 7. uo, vo, Po, and β are all set to 1 with Re=10. The L2
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norm of error between these two solutions vs. mesh size is presented in Table
1. Further the ratio of errors and accuracy of the results are presented which
show the second order accuracy of flux integration.
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C2x = cos(2πx)

S2x = sin(2πx)

C2y = cos(2πy)

S2y = sin(2πy)
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Table 1: Flux integration L2 error with the exact flux.

Term Mesh Error Ratio Accuracy

R[0]

10x10 0.0479469
20x20 0.0119834 4.001110 2.000400
40x40 0.0029957 4.000200 2.000072
80x80 0.000748916 4.000048 2.000017

160x160 0.000187228 4.000021 2.000008
320x320 4.68E-05 3.999991 1.999997

R[1]

10x10 0.196283
20x20 0.0503244 3.900355 1.963605
40x40 0.01266 3.975071 1.990981
80x80 0.00316995 3.993754 1.997745

160x160 0.000792797 3.998438 1.999437
320x320 0.000198219 3.999601 1.999856

R[2]

10x10 0.200026
20x20 0.0512679 3.901584 1.964060
40x40 0.0128964 3.975365 1.991087
80x80 0.00322907 3.993843 1.997778

160x160 0.000807578 3.998462 1.999445
320x320 0.000201914 3.999614 1.999861

1.2 Correctness of implicit discretization flux Jacobian

The implicit time discretization of the Navier-Stokes equations can be written
as follows.
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The left hand side of this equation arises from the following approximation.(
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The correctness of the right hand side of this equation is proved in the previous
section. I will calculate residual for the data set presented in the previous section
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and then update the solution vector with the following differential change.
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The new residual is calculated and with that the left hand side of Eq. 9 is
computed. This calculation is conducted on a 20 × 20 mesh and the error for
each term is presented in Table 2.

Table 2: Implicit discretization flux Jacobian calculation L2 error.

Term Error

[0] 2.88E-17
[1] 5.00E-13
[2] 5.00E-13

3 Flow in a Box with a Moving Top

The famous cavity problem is selected for code validation. The walls have no-
slip boundary conditions with the top wall moving at a constant velocity. The
fluid is isothermal which means no buoyancy effects. Reynolds number is set to
100 with β = 1.0. A schematic view of this problem is presented in Fig. 1.

3.1 Validation case

The initial condition of previous sections is used here as well. Setting Utop = 0.0
and h = 1.0 we should get zero velocity at the steady state solution and a
constant pressure everywhere. The solution is carried out and the average value
and standard deviation from average of each term is calculated in the domain.
These results are presented in Table 3. As seen in this table, the average velocity
components are very close to zero with small standard deviation. Also, pressure
has a non-zero constant value with a small standard deviation. The value of
pressure is negative only for the 40×40 mesh, which is strange. The convergence
history of this simulation with ∆t = 0.05 and β = 1.0 is plotted for all three
terms in the solution vector. Figs. 2, 3, and 4 show the error between consecutive
solutions (up to 200 iterations) on grids of 10 × 10, 20 × 20, and 40 × 40,
respectively. The convergence L2 norm of error is oscillatory because of the
oscillations of pressure in the solution domain. These oscillations are errors
propagating in the solution domain, hitting the boundaries and coming back for
another pass. The frequency of oscillations is somewhat constant. The period
of each oscillation in the convergence history plot should be about 1.0

∆t which
in this case is equal to 20. And yes, the oscillations have a period of about 20
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Figure 1: The physical domain of solution.

iterations in these plots. However, the same analysis did not work for other time
steps. This frequency is a function of ∆t, mesh size, β, and Reynolds number,
I think.

Table 3: Steady state solution average and standard deviation for Utop = 0.0.

Mesh P mean P SD u mean u SD v mean v SD

10x10 0.00205829 3.71E-09 -2.64E-10 4.77E-10 2.98E-10 4.12E-10
20x20 0.0062983 1.86E-09 -4.63E-10 3.73E-10 1.71E-10 2.03E-10
40x40 -0.00225158 1.31E-08 1.91E-11 6.01E-10 3.51E-12 1.46E-10
80x80 0.00015934 5.23E-08 -1.06E-11 6.26E-10 -1.73E-12 1.06E-10

160x160 0.000251319 2.08E-07 -3.31E-15 3.47E-12 -5.51E-12 6.37E-10
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Figure 2: Convergence history of solution with Utop = 0.0 on a 10× 10 mesh.
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Figure 3: Convergence history of solution with Utop = 0.0 on a 20× 20 mesh.
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Figure 4: Convergence history of solution with Utop = 0.0 on a 40× 40 mesh.
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3.2 Solution for Utop = 1.0

A 20 × 20 mesh is used with Utop = 1.0 and Re=100 in this section. The
contour of pressure of the solution is presented in Fig. 5 while Fig. 6 shows
the streamlines. As seen in Fig. 5, pressure is highest at the top right corner
and lowest at top left corner. Further, the distribution of u along x = 0.5 and
distribution of v along y = 0.5 are presented in Fig. 7. This figure also compares
the results of the present study to the results of Ghia in [1]. As seen here, the
results are very similar. Convergence history of this test is presented in Fig. 8.
∆t is set to 0.5 for this solution.
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Figure 5: Pressure contours with Utop = 1.0 and Re=100 on a 20× 20 mesh.
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Figure 6: Streamlines with Utop = 1.0 and Re=100 on a 20× 20 mesh.
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3.3 Sanity check

The exact same problem of the previous section is solved again with Utop = −1.0.
The contour of horizontal velocity for uUtop=1.0(x, y) + uUtop=−1.0(1 − x, y) is
plotted in Fig. 9. As seen here, the difference between the two solutions is very
small everywhere with a maximum of less than 10−8. The average value in this
plot is 1.9750× 10−11 with a standard deviation of 1.1201× 10−9.
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Figure 9: Contour of uUtop=1.0(x, y) + uUtop=−1.0(1− x, y).

3.4 Grid convergence

The solution is carried out for Utop = 1.0 on different mesh sizes to study the
grid convergence. A cubic interpolation is utilized to find the velocity at the
desired location. The horizontal velocity distribution along x = 0.5 is presented
on all the meshes in Fig. 10. A closer view of this solution is presented in Fig.
11. As seen, the solutions on meshes larger than 80 × 80 are almost identical.
The distribution of v on y = 0.5 is presented in Fig. 12 which confirms solution
accuracy and grid convergence on the 80×80 mesh. Grid convergence of solution
data (according to [2]) is carried out for the horizontal component of velocity at
the center of the domain (x, y) = (0.5, 0.5). The results are presented in Table
4. According to this table grid convergence index is very close to zero at fine
meshes which indicates convergence, obviously. Further, the order of accuracy is
close to 2 which is what we were looking for. Grid convergence index of meshes
finer than 80 × 80 is less than 1 percent and I think this mesh is the coarsest
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we need for grid convergence.
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Figure 10: Distribution of u along x = 0.5 for different mesh sizes.

Table 4: Grid convergence study for u at (x, y) = (0.5, 0.5).

Mesh u Difference Apparent Order Rel. Error [%] Extrap. Value GCI [%]

10× 10 -0.173051
20× 20 -0.19588 0.022829 13.192065
40× 40 -0.205559 0.009679 1.237938 4.941291 -0.212683 4.546269
80× 80 -0.208244 0.002685 1.849936 1.306194 -0.209275 0.626811

160× 160 -0.208924 0.00068 1.981315 0.326540 -0.209155 0.138433
320× 320 -0.209093 0.000169 2.008511 0.080891 -0.209149 0.033441
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Figure 11: Distribution of u along x = 0.5 for different mesh sizes.
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4 Effect of Increasing h

As the ratio of height to width of the box increases, the single vortex eventually
becomes unstable, and a second vortex forms below it. There can be even more
vortices if this ratio is sufficiently large. The convergence criteria on u is the L2

norm of error which should be less than 10−10. For this part, Re is set to 300
with Utop = 1.0 , w = 1, and h = 2.5. β is reduced to get a faster convergence
rate. We have to be careful about the time step as it has a considerable effect on
the stability of the numerical solution. The pressure contours and streamlines on
a 80× 200 mesh are presented in Figs. 13 and 14, respectively. The magnitude
of u on x = 0.5 is presented in Fig. 15. The convergence history for this test is
presented in Fig. 16. As seen in this figure, pressure is oscillating until about
3000 iterations and after that the oscillations in pressure attenuates. This might
be due to the very small changes in the solution after that point which until then
were a cause for pressure oscillations. Furthermore, I have utilized first order
boundary conditions for a second order discretization of the solution domain.
This means that errors will attenuate after each time hitting the boundaries.
Also, pressure is converging faster than the two components of velocity. u is
converging faster than v as well.

In this simulation two primary vortices are formed. However, there are
smaller secondary vortices on the bottom corners of the domain (just like the
previos sections). The center of a vortex is a place where velocity goes to zero.
We have to use a high order interpolation (or integration for that matter) to find
the center of each primary vortex. I have used a high order integration method
to get the convergence point of the streamlines. In this method a random
point is chosen and then velocities are interpolated over this point with a cubic
interpolation. Then streamlines are integrated moving forward from the initial
point until a single point is found for the center location. The center point of
the two primary vortices on a 160 × 400 mesh are presented in Table 5. Grid
convergence of solution data (according to [2]) is carried out for the location of
each vortex. The results are presented in Tables 6, 7, 8, and 9. According to
these tables, grid convergence index is very close to zero at fine meshes which
indicates convergence, obviously. Further, the order of accuracy is close to 2
which is what we were looking for. The results of the 10× 25 mesh are not that
convincing due to lack of numerical resolution.

In a steady state condition, the mass flow rate integral over a horizontal
line through the primary vortex center should be zero. Which means whatever
amount of mass flow rate is on the right side of the center location is equal to the
mass flow rate on the left side (only with different sign). In fact, mass flow rate
is a very good estimate of the vortex strength. As a result, I have integrated the
mass flow rate over horizontal lines connecting the primary vortex centers to
the side walls. These integration lines are depicted in Fig. 17. These results are
nondimensionalized with the distance from wall ( ṁ

distance ) simply refered to as
mass flow rate or ṁ here. Velocity interpolation is carried out with a quadratic
interpolation function (using 3 points every time). These results are presented
in Table 10 for different mesh sizes. As seen in this table, the net value of mass
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flow rate on a horizontal line going through the center of each vortex goes to
zero with mesh size which is a sign of grid convergence. Also, this definition of
vortex strength is almost constant with changes in grid size. Grid convergence
calculation is carried out for the vortex mass flow rate. The results are presented
in Tables 11, 12, 13, and 14. According to these tables, grid convergence index
is very close to zero at fine meshes which indicates convergence. Further, the
order of accuracy is close to 2 which is what we were looking for.
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Figure 13: Pressure contours on a 80× 200 mesh.
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Figure 14: Streamlines on a 80× 200 mesh.

Table 5: Center location of the two primary vortices.

Vortex x location y location

Top 0.56843 2.12379
Bottom 0.461183 1.32682
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Figure 15: Distribution of u along x = 0.5 for different mesh sizes.
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Figure 16: Convergence history on a 80× 200 mesh.
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Table 6: Grid convergence study for x location of the primary top vortex.

Mesh x location Difference Apparent Order Rel. Error [%] Extrap. Value GCI [%]

10x25 0.614291
20x50 0.590038 0.024253 3.948129
40x100 0.57311 0.016928 0.518752 2.868968 0.533990 8.287694
80x200 0.569345 0.003765 2.168690 0.656942 0.568268 0.234881
160x400 0.56843 0.000915 2.040806 0.160711 0.568136 0.064496

Table 7: Grid convergence study for y location of the primary top vortex.

Mesh y location Difference Apparent Order Rel. Error [%] Extrap. Value GCI [%]

10x25 2.07453
20x50 2.13287 -0.058340 2.812203
40x100 2.12583 0.007040 3.050838 0.330072 2.124864 0.056620
80x200 2.12407 0.001760 2.000000 0.082791 2.123483 0.034496
160x400 2.12379 0.000280 2.652077 0.013182 2.123737 0.003117

Table 8: Grid convergence study for x location of the primary bottom vortex.

Mesh x location Difference Apparent Order Rel. Error [%] Extrap. Value GCI [%]

10x25 0.535204
20x50 0.491325 0.043879 8.198556
40x100 0.469814 0.021511 1.028456 4.378161 0.449127 5.263022
80x200 0.462923 0.006891 1.642289 1.466751 0.459675 0.864174
160x400 0.461183 0.001740 1.985626 0.375872 0.460595 0.158711
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Table 9: Grid convergence study for y location of the primary bottom vortex.

Mesh y location Difference Apparent Order Rel. Error [%] Extrap. Value GCI [%]

10x25 0.924126
20x50 1.28507 -0.360944 39.057877
40x100 1.31565 -0.030580 3.561115 2.379637 1.318481 0.275338
80x200 1.32439 -0.008740 1.806883 0.664310 1.327888 0.332307
160x400 1.32682 -0.002430 1.846677 0.183481 1.327756 0.088324

Table 10: Nondimensionalized mass flow rate over left and right horizontal lines
of primary vortices.

Primary Vortex Mesh Left Hor. Line ṁ Right Hor. Line ṁ Net

Top

10x25 0.150482 -0.152757 -2.2750E-03
20x50 0.17479 -0.175245 -4.5500E-04
40x100 0.190585 -0.190559 2.6000E-05
80x200 0.195634 -0.195637 -3.0000E-06
160x400 0.1969829 -0.196983 -1.0000E-07

Bottom

10x25 -0.00370997 0.00128356 -2.4264E-03
20x50 -0.0110813 0.0106 -4.8130E-04
40x100 -0.0142077 0.0142594 5.1700E-05
80x200 -0.0152906 0.0152818 -8.8000E-06
160x400 -0.0155516 0.0155502 -1.4000E-06

Table 11: Grid convergence study for mass flow rate on the left hand side of the
primary top vortex.

Mesh ṁ Difference Apparent Order Rel. Error [%] Extrap. Value GCI [%]

10x25 0.150482
20x50 0.17479 -0.024308 16.153427
40x100 0.190585 -0.015795 0.621963 9.036558 0.219891 20.958011
80x200 0.195634 -0.005049 1.645398 2.649212 0.198006 1.555913
160x400 0.19698299 -0.001349 1.904118 0.689548 0.197475 0.314254

Table 12: Grid convergence study for mass flow rate on the right hand side of
the primary top vortex.

Mesh ṁ Difference Apparent Order Rel. Error [%] Extrap. Value GCI [%]

10x25 -0.152757
20x50 -0.175245 0.022488 14.721420
40x100 -0.190559 0.015314 0.554304 8.738623 -0.223249 23.317409
80x200 -0.195637 0.005078 1.592519 2.664791 -0.198156 1.652478
160x400 -0.19698301 0.001346 1.915571 0.688014 -0.197468 0.310181

18



x

y

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Right Integration Line

Right Integration Line

Left Integration Line

Left Integration Line

Figure 17: Integration lines for mass flow rate.

Table 13: Grid convergence study for mass flow rate on the left hand side of the
primary bottom vortex.

Mesh ṁ Difference Apparent Order Rel. Error [%] Extrap. Value GCI [%]

10x25 -0.00370997
20x50 -0.0110813 0.007371 198.689747
40x100 -0.0142077 0.003126 1.237423 28.213296 -0.016510 25.973941
80x200 -0.0152906 0.001083 1.529602 7.621923 -0.015864 5.048802
160x400 -0.0155516 0.000261 2.052778 1.706931 -0.015634 0.677560
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Table 14: Grid convergence study for mass flow rate on the right hand side of
the primary bottom vortex.

Mesh ṁ Difference Apparent Order Rel. Error [%] Extrap. Value GCI [%]

10x25 0.00128356
20x50 0.0106 -0.009316 725.828165
40x100 0.0142594 -0.003659 1.348172 34.522642 0.016627 27.914809
80x200 0.0152818 -0.001022 1.839647 7.170007 0.015678 3.474884
160x400 0.0155502 -0.000268 1.929503 1.756338 0.015646 0.781500
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5 Complementary Results

5.1 Effect of Reynolds number

A numerical grid of 160 × 160 is used for the calculations in this section. The
numerical solution is carried out and the results are presented. Figs. 18 and
19 show the streamlines for solutions with Reynolds numbers of 1000 and 5000,
respectively. At Re=5000 a new secondary vortex emerges from the top left
corner of the domain. Also, a small vortex forms beneath the bottom right
corner secondary vortex. Figs. 20 and 21 show u and v on the symmetry lines of
the domain for Reynolds numbers of 1000 and 5000, respectively. These results
are also compared to the data from [1]. As seen, there are good agreement
between the results which show the accuracy of the simulations.
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Figure 18: Streamlines in the solution with Re=1000.
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Figure 19: Streamlines in the solution with Re=5000.
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Figure 20: u and v distribution on symmetry lines of the domain at Re=1000.
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Figure 21: u and v distribution on symmetry lines of the domain at Re=5000.
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5.2 Effect of β

A 40 × 40 mesh is selected with Re=100 on the rectangular domain for this
section. The convergence history is plotted in Fig. 22 for different values of β.
The fastest convergence history belongs to β = 0.1 with only 400 iterations to
full convergence to 10−10. On the other hand, β = 2.0 and β = 0.02 are the
worst performers.
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Figure 22: Convergence history on a 40× 40 mesh with different values of β.

5.3 Effect of h/w

A Reynolds number of 300 is used for the present section. Changing h
w has

interesting effects on the behavior and the number of vortices present in the
flow. Figs. 23, 24, 25, and 26 show the streamlines for h

w = 2, 3, 4, and
5, respectively. These contours are rotated clockwise to get the most out of
paper real estate. It is important to mention that adjacent vortices in this
problem are counter rotating. Increasing h

w at constant Re, results in increasing
number of vortices. Further, these vortices might be unstable in reality. We
are conducting a steady state solution which makes any unstable feature in the
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domain to vanish. I think a better analysis here should be carried out with an
unsteady Navier-Stokes solver.
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Figure 23: Stream lines in the solution with Re=300 and h
w = 2.
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Figure 24: Stream lines in the solution with Re=300 and h
w = 3.
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Figure 25: Stream lines in the solution with Re=300 and h
w = 4.
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Figure 26: Stream lines in the solution with Re=300 and h
w = 5.
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