
Krylov Methods

Mohammad Zandsalimy

December 20, 2021

Krylov methods are explored on large systems of linear equations arising
from the implicit solution of incompressible, laminar, 2D energy equation with
a given velocity field. The assembled implicit system is solved only once to study
the effect of the linear system solver in use. The incompressible energy equation
is presented in Eq. 1. The computational domain is a rectangular channel with
a size of 40 in x direction and 1 in y direction. The velocity field in all cases is
assumed to be fully developed and is given as in Eq. 2. u in this equation is a
measure of the average flow rate in the channel which for our purposes is assumed
to be 3 [m/s]. This velocity profile is a parabolic distribution. We assume that
the temperature distribution on the bottom and top walls are constant and
equal to 0 and 1, respectively. Further, the temperature at outlet is assumed to
be fully developed and T (y) = y at the inlet. Also, we have Re= 25, Pr= 0.7,
and Ec=0.1. Time step is also set equal to 0.25.

∂T

∂t
+
∂uT

∂x
+
∂vT

∂y
=

1

RePr

(
∂2T

∂x2
+
∂2T

∂y2

)
+
Ec

Re

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂v

∂x
+
∂u

∂y

)2
]

(1){
u(x, y) = 6uy(1− y)

v(x, y) = 0
(2)

Second order centered fluxes are used to compute the flux integrals. The
equation for flux integration is presented as Eq. 3. Further, the equation for
source term is presented as Eq. 4.

Fluxi,j =−
[
ui+1,jT i+1,j − ui−1,jT i−1,j

2∆x

]
−
[
vi,j+1T i,j+1 − vi,j−1T i,j−1

2∆y

]
+

1

RePr

[
T i+1,j − 2T i,j + T i−1,j

∆x2
+
T i,j+1 − 2T i,j + T i,j−1

∆y2

]
(3)

1



Sourcei,j =
Ec

Re

[
2

(
ui+1,j − ui−1,j

2∆x

)2

+ 2

(
vi,j+1 − vi,j−1

2∆y

)2

+

(
ui+1,j − ui−1,j

2∆y
+
vi,j+1 − vi,j−1

2∆x

)2
] (4)

1 Direct Solver

The δ form of the implicit equation is used to set up the linear system of equa-
tions which is presented in Eq. 5. Our baseline numerical grid is 20×10 with 200
equations and unknowns. Subsequent finer meshes are constructed by multiply-
ing the baseline mesh size by 2 in each direction. The fill pattern for coefficients
matrix of the assembled system on the baseline mesh is presented in Fig. 1.

δT i,j

∆t
+

[
ui+1,jδT i+1,j − ui−1,jδT i−1,j

2∆x

]
+

[
vi,j+1δT i,j+1 − vi,j−1δT i,j−1

2∆y

]
− 1

RePr

[
δT i+1,j − 2δT i,j + δT i−1,j

∆x2
+
δT i,j+1 − 2δT i,j + δT i,j−1

∆y2

]
= Fluxi,j + Sourcei,j

(5)

Figure 1: Fill pattern of coefficients matrix for the baseline mesh

2



An LU solver is utilized for direct solution of the linear system. Run time
of the program is accurately calculated using chrono library. The run time of
one iteration of the solution is presented vs. mesh size in Table 1. All the
tests are conducted using level 3 optimization of GNU compiler. As seen in this
table, run time increases with increasing number of equations. The order of time
increment vs. number of unknowns is also presented in this table which shows
O(N3) increment in run time. We know that solving a sparse matrix using LU
decomposition requires O(N3) operations (according to [1]) which is consistent
with the conclusion. Further, the residual is close to zero which means this is
an exact solution.

Table 1: Run time vs. mesh refinement for the direct solver

Mesh Run Time [ms] Residual Order

20× 10 6.989 6.34E-17
40× 20 347.087 2.51E-16 2.8170337
80× 40 23942.752 1.16E-15 3.0540739
160× 80 1363722.112 6.82E-15 2.9159084

2 Approximate Factorization

We can use approximate factorization to decompose Eq. 5 in x and y directions
as in Eq. 6. As a result, Eq. 5 can be rewritten as Eq. 7, which can in turn be
written in the decomposed version of Eq. 8. The solution is carried out on rows
of cells first, and then on columns. In this way, we get the two step in Eq. 9 for
our implicit solver. α and β coefficients in this equation are presented in Eq.
10. The resulting tridiagonal matrices are solved using a Thomas algorithm.

[I] + ∆t[∆x] + ∆t[∆y] ≈ ([I] + ∆t[∆x]) ([I] + ∆t[∆y]) (6)

([I] + ∆t[∆x]) ([I] + ∆t[∆y])
−→
δT = ∆t

−→
R (7)

([I] + ∆t[∆x]) δ̃T = ∆t
−→
R

([I] + ∆t[∆y])
−→
δT = δ̃T

(8)

(−βxi−1,j
− αx)δ̃T i−1,j + (1 + 2αx)δ̃T i,j + (βxi+1,j

− αx)δ̃T i+1,j = ∆t
−→
R i,j

(−βyi,j−1
− αy)δT i,j−1 + (1 + 2αy)δT i,j + (βyi,j+1

− αy)δT i,j+1 = δ̃T i,j

(9)

3





αx =
∆t

RePr∆x2

αy =
∆t

RePr∆y2

βxi,j =
ui,j∆t

2∆x

βyi,j =
ui,j∆t

2∆y

(10)

The run time of one iteration of the solution is presented vs. mesh size in
Table 2. All the tests are conducted using level 3 optimization of GNU compiler.
As seen in this table, run time increases with increasing number of equations.
The order of time increment vs. number of unknowns is also presented in this
table which shows O(N1) increment in run time. According to [1], solving a
tridiagonal system with n equations only requires O(n) operations. Further, we
need to solve m tridiagonal systems of size n and n tridiagonal systems of size
m in our setup. In this setting, m and n are the number of rows and columns
of the mesh, respectively. As a result, our time increment should be of order
O(2 × n × m) which is equal to O(2N). This is consistent with our result.
Furthermore, the residual in the approximate factored version of the problem
increases with mesh size. The error of approximate factorization shows itself
in this table very well. This error seems too high at first glance, but we can
conduct a more careful study to confirm the correctness of this calculation which
is presented in the next section.

Table 2: Run time vs. mesh refinement for the approximate factorization

Mesh Run Time [ms] Residual Order

20× 10 0.007 2.79E-03
40× 20 0.034 4.47E-03 1.1400540
80× 40 0.155 7.17E-03 1.0943308
160× 80 0.654 1.21E-02 1.0385112

3 Direct Solution of Approximate Factorization

To confirm the residuals of the approximate factorized version of the equation
which are solved using a Thomas algorithm, we assemble the approximate fac-
torized equations and solve them directly using the LU decomposition. This
means, do the multiplication in Eq. 7 and assemble the entire matrix at once.
Obviously, this time there are some extra terms (compared to Eq. 5). The fill
pattern for coefficients matrix of the assembled system on the baseline mesh is
presented in Fig. 2.

4



Figure 2: Fill pattern of the approximated factorized matrix for the baseline
mesh

An LU solver is utilized for direct solution of this linear system. The run
time of one iteration of the solution is presented vs. mesh size in Table 3. All
the tests are conducted using level 3 optimization of GNU compiler. As seen in
this table, run time increases with increasing number of equations. The order
of time increment vs. number of unknowns is also presented in this table which
shows O(N3) increment in run time. The residuals in this table confirm the
correctness of our approximate solution in the previous section. We can see
that run time is just as high as the results of the direct solution of the original
matrix while the residuals are as bad as the ones from the tridiagonal solution
of approximate factorization. This means, we are getting the worst of the both
worlds.

Table 3: Run time vs. mesh refinement for direct solution of the approximate
factorized matrix

Mesh Run Time [ms] Residual Order

20× 10 11.086 2.79E-03
40× 20 325.962 4.47E-03 2.4389465
80× 40 23762.124 7.17E-03 3.0939081
160× 80 1550920.249 1.21E-02 3.0141584

5



4 GMRES

A GMRES solver is developed (with no preconditioning) to solve the original
system of linear equations from the direct solver. First thing to note here is that
GMRES can do more than one iteration to get a better approximate solution
to the linear system. While very useful, I think we should avoid conducting
more than one GMRES iterations per solution. This is to have a better view
on the residuals as well as the solution time. Otherwise, we will get errors close
to zero which are not good to make conclusions. The run time of one iteration
of the solution is presented vs. mesh size in Tables 4, 5, and 6 using 20, 30,
and 40 GMRES vectors, respectively. All the tests are conducted using level 3
optimization of GNU compiler. As seen in these tables, run time increases with
increasing number of equations. The order of time increment vs. number of
unknowns is not constant in this case which shows a nonlinear behavior. This is
mainly due to the LU decomposition of the solution to the least squares problem
in the GMRES iteration. As seen here, using 20 vectors, the residual is less than
the approximate factorization for 20× 10 and 40× 20 meshes. However, we are
getting higher error for finer meshes for the solution with 20 GMRES vectors.
On the other hand, in the case of 30 and 40 GMRES vectors, the residual is
lower than the approximate factorization on the 80 × 40 mesh but we are still
getting higher errors on the finest mesh. Using more GMRES vectors results in
a decrement in the GMRES method residual while the run time does not change
too much.

Table 4: Run time vs. mesh refinement for one GMRES iteration on the original
matrix with 20 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 2.003 2.69E-07
40× 20 18.118 1.67E-04 1.5885947
80× 40 221.733 9.88E-03 1.8066639
160× 80 3205.317 4.75E-02 1.9267858

Table 5: Run time vs. mesh refinement for one GMRES iteration on the original
matrix with 30 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 2.151 6.11E-10
40× 20 26.599 9.13E-06 1.8141463
80× 40 323.134 2.18E-03 1.8013443
160× 80 4712.905 2.77E-02 1.9332061

6



Table 6: Run time vs. mesh refinement for one GMRES iteration on the original
matrix with 40 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 2.805 1.44E-12
40× 20 34.298 5.19E-07 1.8060259
80× 40 422.802 5.99E-04 1.8118929
160× 80 6170.405 1.78E-02 1.9336555

Next, let’s set up this solver so that the output of the GMRES iteration is
always within an error tolerance. Remember that we did not do this previously
to have a better look at run time of the method. The GMRES iteration is
converged to 10−10 before any other calculations. The results are presented in
tables 7, 8, and 9. As seen here, the residual is very small in all cases, but the
run time is higher compared to the previous test, obviously. Further, we are
getting rate of convergence up to order 2.6 which is always nice to have.

Table 7: Run time vs. mesh refinement for converged GMRES on the original
matrix with 20 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 2.628 2.65E-12
40× 20 81.516 1.16E-13 2.4775230
80× 40 2610.005 4.55E-13 2.5004128
160× 80 104596.288 4.70E-13 2.6623176

Table 8: Run time vs. mesh refinement for converged GMRES on the original
matrix with 30 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 11.848 3.38E-17
40× 20 72.281 8.94E-13 1.3044865
80× 40 2562.808 3.05E-13 2.5739826
160× 80 99423.244 3.43E-13 2.6388929

Table 9: Run time vs. mesh refinement for converged GMRES on the original
matrix with 40 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 6.856 1.44E-12
40× 20 97.398 2.92E-16 1.9142266
80× 40 2520.935 1.81E-13 2.3469615
160× 80 95462.797 3.60E-13 2.6214539

7



5 Preconditioned GMRES

The GMRES solver of previous section is modified with a preconditioning ma-
trix which is simply the coefficients from the approximate factorization. This
algorithm can do more than one iteration to get a better approximate solution
to the linear system. First, The run time of one iteration of the solution is
presented vs. mesh size in Tables 10, 11, and 12 using 20, 30, and 40 GMRES
vectors, respectively. All the tests are conducted using level 3 optimization of
GNU compiler. As seen in these tables, run time increases with increasing num-
ber of equations. The order of time increment vs. number of unknowns is not
constant in this case which shows a nonlinear behavior. This is mainly due to
the LU decomposition of the solution to the least squares problem in the GM-
RES iteration. As seen here, using any number of GMRES vectors (20, 30, or
40), the residual is less than the approximate factorization as well as the simple
GMRES on all meshes. On the other hand, The run time of the preconditioned
version of GMRES is pretty similar to the original version. Higher accuracy in
the same amount of time? I’ll take it, thank you very much. Further, the run
time here is higher than the approximate factorization. Using more GMRES
vectors results in a decrement in the preconditioned GMRES residual while the
run time does not change too much.

Table 10: Run time vs. mesh refinement for one GMRES iteration on the
original matrix with 20 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 2.184 1.96E-16
40× 20 17.775 1.70E-11 1.5124024
80× 40 227.962 3.80E-08 1.8404359
160× 80 3308.72 2.10E-06 1.9297040

Table 11: Run time vs. mesh refinement for one preconditioned GMRES itera-
tion on the original matrix with 30 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 2.284 1.71E-10
40× 20 26.006 2.70E-15 1.7546050
80× 40 333.923 3.63E-10 1.8412995
160× 80 4875.509 1.34E-07 1.9339827

8



Table 12: Run time vs. mesh refinement for one preconditioned GMRES itera-
tion on the original matrix with 40 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 3.095 2.05E-15
40× 20 35.273 4.03E-15 1.7552765
80× 40 445.895 3.73E-12 1.8300339
160× 80 6217.843 1.03E-08 1.9008191

Next, let’s set up this solver so that the output of the GMRES iteration is ac-
curate to an error tolerance. The preconditioned GMRES iteration is converged
to 10−10 before any other calculations. The results are presented in tables 13,
14, and 15. As seen here, the residual is very small in all cases (smaller than the
same test for the original GMRES), but the run time is higher, obviously. Com-
pared to the original GMRES, preconditioned version can reach the accuracy
tolerance in much lower time.

Table 13: Run time vs. mesh refinement for converged preconditioned GMRES
on the original matrix with 20 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 6.561 1.96E-16
40× 20 36.354 8.38E-17 1.2350632
80× 40 651.563 5.65E-16 2.0818593
160× 80 12645.457 7.49E-13 2.1392853

Table 14: Run time vs. mesh refinement for converged preconditioned GMRES
on the original matrix with 30 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 12.336 3.17E-17
40× 20 26.25 2.70E-15 0.5447214
80× 40 661.245 4.73E-16 2.3273978
160× 80 13678.188 5.84E-14 2.1852742

Table 15: Run time vs. mesh refinement for converged preconditioned GMRES
on the original matrix with 40 GMRES vectors

Mesh Run Time [ms] Residual Order

20× 10 8.646 2.05E-15
40× 20 36.312 4.03E-15 1.0351708
80× 40 876.011 3.34E-16 2.2962153
160× 80 12074.482 5.39E-13 1.8924343

9



6 Discussion

The run time of all the tests are plotted vs. number of equations in the linear
system in Fig. 3. According to this figure, the approximate factorization is
the fastest in all cases and the direct solver is the slowest of the bunch. On
the other hand, the original GMRES is slower than the preconditioned version
of the algorithm. The GMRES iterations in this figure are converged to 10−10

tolerance. Fig. 4 shows the rum time of all the tests vs. residual. In this
figure, only one GMRES iteration is conducted. As seen here, the run time of
the direct method is the highest while giving the most accurate results. On the
other hand, approximate factorization gives the least accurate results in the least
amount of time. The sweet spot, of course, belongs to preconditioned GMRES
which gives decent accuracy in a decent amount of time. The preconditioned
GMRES displays a strange behavior in the residual with 30 vectors. I have triple
checked my results, there is no problem to be found. I think this is due to the
very small residuals in the solution. We cannot really compare small residuals
confidently. Fig. 5 displays the same results only for the converged GMRES. As
seen here, we are getting pretty much zero residual in decent amount of time for
both GMRES methods. If I had the choice, I would go for the preconditioned
version.

Equations

R
u

n
 T

im
e 

[m
s]

10
3

10
410

­3

10
­2

10
­1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Direct Solver

Approximate Factorization

GMRES, 20 vectors

GMRES, 30 vectors

GMRES, 40 vectors

GMRES PC, 20 vectors

GMRES PC, 30 vectors

GMRES PC, 40 vectors

Figure 3: Run time vs. number of equations

10



Residual

R
u

n
 T

im
e
 [

m
s]

10
­15

10
­13

10
­11

10
­9

10
­7

10
­5

10
­3

10
­2

10
­1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Direct Solver

Approximate Factorization

GMRES, 20 vectors

GMRES, 30 vectors

GMRES, 40 vectors

GMRES PC, 20 vectors

GMRES PC, 30 vectors

GMRES PC, 40 vectors

Figure 4: Run time vs. residual with a single GMRES iteration

Residual

R
u

n
 T

im
e
 [

m
s]

10
­15

10
­13

10
­11

10
­9

10
­7

10
­5

10
­3

10
­2

10
­1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Direct Solver

Approximate Factorization

GMRES, 20 vectors

GMRES, 30 vectors

GMRES, 40 vectors

GMRES PC, 20 vectors

GMRES PC, 30 vectors

GMRES PC, 40 vectors

Figure 5: Run time vs. residual with converged GMRES

11



References

[1] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C++: The Art of Scientific Computing. Cambridge University
Press, 2002.

12


	Direct Solver
	Approximate Factorization
	Direct Solution of Approximate Factorization
	GMRES
	Preconditioned GMRES
	Discussion

