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The inviscid compressible 1-dimensional flow is analyzed numerically using
the finite volume method in the present project. The problem in question is
the famous shock tube which is simulated from an initial condition to ¢ = 0.15
seconds. The initial conditions of this problem are presented in figure [[] The
domain length is 1 unit which is long enough so that no flow feature would
reach either of the ends of the tube. The Euler equations are the governing
equations of this problem. Two flux vector splitting schemes of Steger-Warming
[1] and Roe [2] are utilized for this purpose. Time integration is fully explicit
(implicit methods are readily applicable as well) including Explicit Euler and
several Runge-Kutta methods. To prevent overshoots in the solution, several
flux limiters are introduced, including, Superbee [3], Van Leer [4], and 2nd order
upwind limiters.
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Figure 1: The physical domain and initial conditions of the problem

The system of governing equations are presented in matrix form as follows,
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in which the solution vector U and flux F' are,
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In these equations, p is the fluid density, u is velocity, P is thermodynamic
pressure, and FE is the total energy.
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Integrate equationover a control volume with area A = wAz (w is the channel
width and Az is cell size in x direction) and find the averaged equation.
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Use the Green’s integral theorem for the flux (6—) term,
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We can solve equation |2| using an explicit or implicit method. For this

project we will opt for explicit methods. Rewrite the equation with explicit
time advance,

0T =T ~TU} =~

Now, everything that is left is to calculate the fluxes on left and right faces of
each cell, F7" 1 and F" . Drop the time level indicator, n, for convenience.
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1 Steger-Warming Flux Vector Splitting

Steger and Warming proposed splitting the flux vector into two right and left
moving components. Use characteristic theory for the splitting process. The
flux vector can be written as follows,
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The goal is to split A into two parts of right moving A™ and left moving A~
components and write,
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In this equation, (ATU), 1418 calculated from reconstructed solution variables

on the right face of cell i and (A~U),, 1,41 1s calculated from reconstructed
solution variables on the left face of cell i + 1. Reconstruction is the process
where we calculate solution variables on faces of cells (or any other place) from
average solution variables in cells. This process usually results in overshoots in
the solution in the case of second (or higher) order reconstruction which can be
prevented by the use of certain limiters which we will explain later.

Let’s define a vector of primitive solution variables V as,
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Apply a unitary transformation on A as follows,
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Eigenvalues of A (and A) are as follows,
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or in matrix form,
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in which ¢ is the speed of sound and is defined as,
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Now, the following equation is true,
A= XgAXy,
As a result, we can rewrite A as,
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We can perform the decomposition of A = AT + A~ and rewrite the previous
equation for F'.
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In these equations, AT are the right moving (positive) eigenvalues and A~ are
the left moving (negative) ones. So, for F'™ and F'~ in equation [4| (both on face
i+ 3) we have,
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A very important note is that on face i + %, F is calculated from solution
variables which are constructed from cell ¢ and its neighbors and F'~ from cell
i + 1 and its neighbors. In other words, F'* is right moving, so it comes from
cell ¢ and F~ is left moving, so it comes from cell ¢ + 1 (this is true for face
i+ %) This means that every solution variable that is used to calculate F'™
and F'~ should be reconstructed on face i + % Further, if we intend to use 2nd
order reconstruction, we will need to utilize a limiter to prevent overshoots in
the reconstructed variables. We will discuss this later. In the code, I save the
positive and negative waves on both left and right faces of each cell. Later, in
the time integration procedure for the right face of cell i, I will add the positive
flux on the right face of cell i and negative flux on the left face of cell i + 1 to
find F; +1 in equation {4l Technically, we don’t ever need the positive flux on the
left face and the negative flux on the right face



2 Roe flux vector splitting

Roe suggested using the following equation for the flux on left and right faces
of cell 7,
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This equation is very important and has a lot of new definitions in there. Fj 41
is the full flux on face i + % calculated from reconstructed solution variables

in cell . Fj, 1,y is the full flux on face i + 1 calculated from reconstructed

solution variables in cell ¢ + 1. By full flux I mean,
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The same applies to Uipri and Uittt A in equation |5|is a special Jacobian
with special properties. I will not explain the properties here, instead I will ex-
plain how to calculate this matrix. It was basically Rho’s idea to use a specially
weighted average of solution variables on each face for this matrix. He proposed
the following three averaged variables.
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In these equations, subscript R is for the reconstructed solution on the right
side of face i + & (in cell i + 1) and subscript L is for the reconstructed solution
on the left side of face 7 + % (in cell 7). Further, h is the ethalpy on the face
which is related to other solution variables through,
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As a result, we can easily find P for our calculations. Further, we have,
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Furthermore, |/~1| in equation |5 does not mean determinant of A! This is just
another notation for the following equation.
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In which |A] is the absolute value of the eigenvalue matrix entries as follows,
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Be careful to use Roe average variables in the calculation of A. As a last note, I
split up equationinto two pieces to be saved in cells 4 and i+1 (for calculations
on face 7 + % of course). This is just to be consistent throughout the code with
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Steger-Warming flux vector splitting. As a result, 3 (F»+%’i + |A|Ui+%’i) is

1 ~
saved as the right flux in cell 7 and 3 (Fz'-s—%,ﬂ-l - \A|Ui+%_’i+1) is saved as the
left flux in cell ¢ + 1. These two quantities will be added together in the time
integration scheme, so no worries.

3 Solution Reconstruction and Flux Limiter

To reconstruct the solution variables on faces out of the average values in cells,
I am using the following equation.
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In these equations, T is any variable that you wish to reconstruct and T is the
average value of that variable in the corresponding cell. We need to do this
reconstruction for all the solution variables. Further, ¢ (r;; 1) and ¢(r;_1) are
limiter values to prevent overshoots in solution. Choose ¥ (r) = 0 and you will
get a first order solution reconstruction. Furthermore, r represents the ratio of
successive gradients on the solution mesh for which I use the following equations,
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It’s important to note that in places where there is no solution change, r will
be undefined, so keep an eye out for that. Now everything that is left here is to
use some limiters to find the value of .



1st order upwind Y(r)=0

2nd order upwind ¥ (r) = max(min(2r, 1), 0)
Superbee ¥(r) = max(min(2r, 1), min(r, 2),0)

T+ |r|
1+7r

Van Leer P(r) =

4 Time Integration
Once again, this problem can be solved readily with an implicit scheme, but we
choose to use explicit time advance schemes only. Take equation
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Various time advance schemes are utilized in the present study for the solution
of this problem.
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In these methods we have,

5 Results

An appropriate mesh size (200 cells is the default mesh size unless otherwise
indicated) and time step are selected and the simulations are conducted. We
will use abbreviations to refer to the methods of solution. The following table
summarizes the abbreviations used. The solution will be presented with a three
part code representing each method in the solution. The code consists of three
parts, each with three characters, referring to time integration, flux calculation,
and solution reconstruction methods, respectively. For example the code “E-
E, S-W, UW1” refers to Euler exlicit time integration, Steger-Warming flux
calculation, and 1st order upwind solution reconstruction.

Table 1: Abbreviations used in our solution results

Use Method Abbreviation
. Roe Roe
Flux Calculation Steger-Warming S
. . Upwind 1st order UW1
Solution Reconstruction Upwind 2nd order W2
Superbee Bee
Van Leer vV-L
. . Euler Explicit E-E
Time Integration Runge-Kutta 2 stage RK2
Runge-Kutta 3 stage RK3
Runge-Kutta 4 stage RK4

The solution is conducted to a final time of ¢ = 0.15 seconds. Figures [2]
and [5| present the solution for p, u, P, and T (respectively) using Runge-
kutta 2 stage method of time integration (time step is 0.0001) and Superbee
limiter with different flux calculation methods. Once the simulation starts, a
normal shock propagates into the low-pressure region and a series of expansion
waves move to the high-pressure section. As the shock wave moves to the right
with a certain velocity, it accelerates the gas in the positive x direction. The
expansion wave moving to the left also accelerates the gas in the positive x-
direction. A shock wave is a nonisentropic process, whereas an expansion wave
is isentropic. Therefore the entropies behind the shock and expansion waves
would be different. Thus two distinct regions are identified at * = 0, known
as contact discontinuity. This region is identified by a jump in entropy and
temperature values while pressure and velocity are continues.

Looking at these solutions, we can see that the initial temperature in the
two regions is not similar. Further, the density plot shows that the high-density



region (left side of the domain) goes through the expansion wave to a lower
density region. Moving through the contact discontinuity, density decreases
and moving through the normal shock, density decreases agian (right side of
the domain). Velocity is zero at both ends of the solution domain. Expansion
waves result in a gradual increment in the velocity magnitude. There is no
velocity jump through the contact discontinuity section. The pressure diagram
shows that going through the expansion wave decreases the pressure dramati-
cally. The pressure is constant through the contact discontinuity and decreases
through the normal shock (moving to the right). The temperature plot shows
high temperature and low-temperature regions at both ends of the domain. The
temperature value is lower on the left side of the contact discontinuity compared
to the right side of this section. As seen in figures [ and [5} Roe scheme
performs better in controlling overshoots in u and P with much less oscillations
than Steger-Warming flux. However, both of these methods have some oscilla-
tions in the contact discontinuity section in p which leads to oscillations in T as
well.
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Figure 2: Solution for p with RK2 and Bee for different flux vector calculations
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Figure 3: Solution for u with RK2 and Bee for different flux vector calculations
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Figure 4: Solution for P with RK2 and Bee for different flux vector calculations
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Figure 5: Solution for T with RK2 and Bee for different flux vector calculations

Figure[6]shows the solution for p using Van Leer limiter with Steger-Warming
flux splitting and different time integration methods (time step is 0.0001). The
results in this test are very close. For this reason, plots of other solution variables
are not presented.
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Figure 6: Solution for p with S-W and V-L and different time stepping methods

Figures[7] [8} [9] and [10] present the solution for p, u, P, and T (respectively)
using Runge-kutta 3 stage method of time integration (time step is 0.0001) and
Roe flux vector splitting with different limiters. As seen in these figures, for u
and P, all limiters (except for the 1st order upwind) perform well. However,
for p and T, Van Leer limiter performs much better than others in terms of less
oscillations in the solution.
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Figure 7: Solution for p using Runge-kutta 3 and Roe flux with different limiters
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Figure 8: Solution for u using Runge-kutta 3 and Roe flux with different limiters
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Figure 9: Solution for P using Runge-kutta 3 and Roe flux with different limiters
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Figure 10: Solution for T using Runge-kutta 3 and Roe flux with different
limiters
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Figures and present the solution for p, w, P, and T (re-
spectively) using Runge-kutta 4 stage method of time integration (time step is

0.0001) and Steger-Warming flux vector splitting with Van Leer limiter and dif-
ferent numerical grids. As seen in these figures, increasing the mesh resolution
results in more precise solution values. Temperature and density plots depict
a strange solution behavior at the contact discontinuity (mostly on the right
side). This behavior diminishes with mesh resolution.
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Figure 11: Solution for p using Runge-kutta 4 and Steger-Warming flux with
Van Leer limiter on different meshes
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Figure 12: Solution for u using Runge-kutta 4 and Steger-Warming flux with
Van Leer limiter on different meshes
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Figure 13: Solution for P using Runge-kutta 4 and Steger-Warming flux with
Van Leer limiter on different meshes
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Figure 14: Solution for T" using Runge-kutta 4 and Steger-Warming flux with
Van Leer limiter on different meshes

The effect of time step size on the final solution is not very much and not
interesting either. As a result, we will not present the solution with different
time step sizes. Now, using Runge-kutta 4 stage method of time integration
(time step is 0.0001) and Steger-Warming flux vector splitting with Van Leer
limiter and different numerical grids, we are going to find the accuracy of Van
Leer limiter in space discretization. We will use solution on the mesh with
1600 cells as the benchmark for error calculations. The results are presented
in table [2] for p. As seen, the order of accuracy is as high as 1.5 which is not
bad considering that there is a shock wave in the solution. Table |3|repeats the
exact same experiment for u. As seen here, the finest order of accuracy is about
1.6. Table [ is an accuracy study on P for Roe flux splitting, Runge-Kutta 2
stage, and Superbee limiter. As seen here, the Superbee limiter is also almost
2nd order accurate in space.
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Table 2: Behavior of solution error for p with mesh refinement for RK4, S-W,
V-L

Mesh Lj error with the finest mesh Ratio Order of Accuracy

100 0.114170 - -
200 0.079036 1.444526 1.201884
400 0.044429 1.778955 1.333775
800 0.018354 2.420602 1.555829
1600 0.000000 - -

Table 3: Behavior of solution error for v with mesh refinement for RK4, S-W,
V-L

Mesh Lj error with the finest mesh Ratio Order of Accuracy

100 0.063484 - -
200 0.055375 1.146424 1.070712
400 0.031175 1.776280 1.332771
800 0.012119 2.572260 1.603826
1600 0.000000 - -

Table 4: Behavior of solution error for P with mesh refinement for RK2, Roe,
Bee

Mesh Lj error with the finest mesh Ratio Order of Accuracy

100 0.260338 - -
200 0.185523 1.403266 1.184595
400 0.107703 1.722535 1.312454
800 0.046217 2.330343 1.526546
1600 0.000000 - -

Refer to figure [15] for the exact solution at any time after the initial condi-
tions. In this figure, a is the speed of sound and corresponds to ¢ in our cal-

P
culations. Analytical solution of this problem shows that Fz = 3.7718096108.
1

This value correlates well with the numerical result of F2 = 3.77181. The nor-
1

mal shock velocity is V, = 2.173975973 analytically. The shock should move

to xs = 0.326096396 in 0.15 seconds which correlates to the numerical solution

value of s = 0.326187. Some important properties of the solution are presented
in table o} Good agreement is seen in all cases.
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Figure 15: Solution of the shock tube [5]

Table 5: Comparison of solution properties from analytical and numerical solu-
tions

Property Analytical Solution Numerical Solution

Py
— 3.7718096108 3.77181

Py

P
— 0.3143174676 0.31432

Py

T
T 1.5597150949 1.55972

1

T3
= 0.7184408281 0.71843

Ty
Pz 2.4182683255 2.41827

P1
% 0.4374994505 0.43750

4
Vs 1.2749955126 1.27499
Shock Position 0.3260963966 0.32618

6 Further Results

Let’s use the following initial conditions to get a stationary contact discontinuity.

p=101 vu=0 P=1 =<0

Using RK2 and Superbee flux limiter the solution is conducted on a 200 cell
mesh with different flux splitting schemes. Figures and [19] show
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the results of this experiment. As seen here, Roe flux splitting performs much
better than Steger-Warming. Steger-Warming has spurious currents in u and P
plots which are not physical. Further, at x = 0, Roe scheme has less dissipation
which is good.
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Figure 16: Solution for p using RK2 and Bee with different flux splitting meth-
ods
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Figure 17: Solution for u using RK2 and Bee with different flux splitting meth-
ods
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Figure 18: Solution for P using RK2 and Bee with different flux splitting meth-
ods
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Figure 19: Solution for T" using RK2 and Bee with different flux splitting meth-
ods

Initialize the domain with the following initial conditions to get a weak
acoustic wave.

p=1 u=0 P=101 <0

p=1 u=0 P=1 x>0
Using RK2 and Van Leer flux limiter the solution is conducted on a 200 cell
mesh with different flux splitting schemes. Figures 20] 21] 22] and 23] show the

results of this experiment. As seen here, Roe flux splitting performs much better
than Steger-Warming in the contact discontinuity section with less dissipation.
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Figure 20: Solution for p using RK2 and V-L with different flux splitting meth-
ods
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Figure 21: Solution for u using RK2 and V-L with different flux splitting meth-
ods
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Figure 22: Solution for P using RK2 and V-L with different flux splitting meth-
ods
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Figure 23: Solution for T using RK2 and V-L with different flux splitting meth-
ods
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