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Abstract

The stability of different computational fluid dynamics problems is evaluated

and a stabilization approach based on mesh modification is presented. The

problematic parts of the unstructured mesh are identified through the unstable

eigenvectors and a few vertices are selected to be perturbed. The improved ver-

tex selection methodology ensures the fastest possible optimization procedure.

Perturbation vectors are computed utilizing the gradients of unstable eigen-

modes with respect to the movement of the selected vertices. The optimization

is performed in a single step to reduce the computational time. A new ap-

proach is presented to remediate the opposing eigenmodes in larger problems.

This method is applied to different CFD problems and the results prove the

robustness of our optimization scheme.

Keywords: Stability Analysis, Stability Improvement, Eigenanalysis, Finite

Volume Methods, Unstructured Mesh, Mesh Optimization.

1. Introduction

Computational fluid dynamics has been a flexible and powerful tool in design

and analysis applications in many areas of science and engineering for the past

seven decades. The rapid development of computers has enabled scientists to

tackle more complex numerical problems both in size and fidelity of the simu-5
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lations. However, most real-world applications require numerical solutions on

complex geometries to capture intricate physics features which in turn compel

engineers to seek a balance between accuracy and computational cost despite

this lively growth in computing power. Unstructured meshes provide this bal-

ance, which offer more accurate results and are preferred over the structured10

counterpart in certain applications (e.g. ocean modeling [1]). Numerical stabil-

ity issues in such substantial problems may give rise to difficulties in convergence,

adversely affecting the reliability of the computations. Consequently, stability

analysis has always been an integral facet of computational fluid dynamics and

the main subject of several different studies in this area [2, 3, 4]. Yet, while15

the stability of numerical methods based on structured grids is well understood,

studies conducted on stability analysis and improvement of methods based on

unstructured grids are scant.

Constructing the numerical mesh is among the most time-consuming tasks

in a numerical simulation process and requires extensive human intervention.20

Reliable mesh generation techniques encapsulate the knowledge and experience

of experts in the scientific field in question. Deficient features in an unstructured

mesh can have unfavorable effects on convergence rate as well as the accuracy

of the results, aside from the risk of numerical divergence. However, as we will

show later, traditional mesh quality measures can sometimes be deceptive and25

do not necessarily correlate with optimal convergence of the solution. Further,

the stability of a numerical simulation depends not only on the mesh but also

on the physics of the problem, the boundary conditions, and the reconstruction

stencil [5, 6, 7]. As a result, different physics or numerics might produce stable

or unstable solutions on the same mesh that is considered to be of high qual-30

ity by traditional measures. Hence, the development of automated and reliable

stability analysis and improvement tools are critical in computational simula-

tions on unstructured meshes to correctly predict the stability of the solution

algorithm, and to improve the convergence rate if possible.

Numerical stability studies for problems based on structured grids can be35

readily performed using Fourier analysis [8] which is not so easily applicable
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to methods based on unstructured meshes. The Lyapunov theorem [9] with a

custom energy function is often utilized for stability analysis in such problems,

conveniently called the energy stability analysis [8]. This method provides tools

to study the equilibrium properties of a dynamical system, or in our case, the40

system of differential equations resulting from space discretization. If the cus-

tom scalar function (generalized energy) has only one local minimum (near the

converged solution) and it is decreasing starting from all non-equilibrium ini-

tial conditions, then we expect to have a locally stable solution. Giles [10]

used energy stability to analyze the time-step stability of a linearized form of45

Navier-Stokes equations on a 3D grid with unstructured tetrahedral elements.

Moinier and Giles [11] used a similar idea and analyzed the stability of the Eu-

ler equations discretized on 3D unstructured grids. Their goal was to use the

multi-grid method together with Jacobi preconditioning to accelerate the so-

lution of the compressible Reynolds-averaged Navier–Stokes equations. Haider50

et al. [12] utilized the same concept to examine the eigenvalue stability of the

linear semi-discrete advection equation on general unstructured meshes. They

also investigated the influence of the slope reconstruction method and sten-

cil on eigenvalue stability and presented a reconstruction method for stable

discretizations. Zangeneh and Ollivier-Gooch [5] utilized the eigenvalue gradi-55

ents of the semi-discrete Jacobian with respect to local changes in the mesh

to stabilize their finite volume solver. Moving several vertices in an unstruc-

tured mesh, they were able to stabilize an initially unstable solution (solutions

that are unstable on the initially selected mesh given physics, time-integration

method, boundary conditions, and other options). In another work, Zangeneh60

and Ollivier-Gooch [6] investigated the energy stability due to solution recon-

struction in cell-centered finite volume methods on unstructured meshes and

selectively changed the stencil size of certain parts of the grid which improved

energy stability of the solution. Finally, in [7] they studied the effects of bound-

ary conditions on stability in an inviscid compressible finite volume method65

on unstructured meshes and optimized a hybrid boundary condition for better

stability.
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The present study seeks to analyze and improve the energy stability of differ-

ent finite volume solutions on unstructured meshes by leveraging eigenanalysis

of the semi-discrete Jacobian. The gradients of eigenvalues with respect to mesh70

vertex movements are calculated and used to push the eigenvalues with posi-

tive real parts to the left open-half of the eigenspectrum as presented in [5].

Contrary to that study, however, we select the minimum number of required

vertices to move and stabilize the solution which results in an accelerated op-

timization procedure. For this purpose, the eigenvalues of the Jacobian matrix75

with positive real parts are selected and the right eigenvectors associated with

them are identified. Each eigenvector has larger components in the cells that

are contributing to the instability of that eigenmode. Our approach adds the

absolute value of the right eigenvector component in a cell as a weight measure

to its vertices. We use the summation of weights on vertices as a plausible80

approximation of how effective a vertex will be in pushing an eigenvalue with

a positive real part to the left side of the complex plane. Finally, we choose a

single vertex with the largest weight in the entire domain for modification. The

presented algorithm herein is much faster to execute with only a few iterations of

the mesh optimization procedure required to reach full stability (often only one85

iteration of the optimization program). We also present a method to increase

the convergence rate for stable problems. Further, we will present evidence on

the shortcomings of traditional mesh quality factors in predicting stability.

As the solution progresses, the eigenvalues of the semi-discrete Jacobian

change and new unstable modes might appear in the solution. To remediate90

these cases, we can apply our approach at one or more intermediate stages

of convergence as needed. The new method is capable of stabilizing initially

unstable finite volume solutions on unstructured meshes as well as solutions

that exhibit unstable behavior after several iterations of the solver.

2. Methods95
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2.1. Flow Simulation

Consider an arbitrary conservative dependent variable U which is a function of

time and a vector of independent variables ~x. We can write the conservation

equation as
∂U

∂t
(t, ~x) + ~∇ · ~F (t, ~x) = f(t, ~x) (1)

in which ~F and f are the flux vector and the source term, respectively. In finite100

volume methods the differential equations are written in divergence form which

is then integrated over control volumes, and with the application of Gauss’s

theorem, the volume integration is converted into a surface integral across the

boundaries. Doing so in an arbitrary cell results in the following equation,

dŪ

dt
= −

1

|Vi|

∮

∂Vi

(

~F · ~n
)

dA+
1

|Vi|

∫

Vi

f dV = R(Ū) (2)

in which Vi is the ith cell with a volume of |Vi|, ~n is the unit outward-pointing105

normal vector from the faces of the cell, R is called the residual, and Ū is the

average conservative property inside the cell which can be expressed as follows,

Ū :=
1

|Vi|

∫

Vi

UdV (3)

This methodology is locally conservative (inside each cell), hence global conser-

vation property is guaranteed. A detailed description of finite volume methods

in computational fluid dynamics can be found in the work of [13, 14, 15, 16].110

The flux integral in Equation 2 is calculated with second-order accuracy through

the following procedure;

1. Reconstruct the piece-wise constant control volume averages using the

linear least-squares method [17].

2. Compute the flux at each quadrature point on the cell’s perimeter. Roe’s115

scheme [18] is utilized for inviscid flux calculation in the present study.

3. Sum up the flux values using Gauss quadrature rules.

The boundary conditions are applied weakly using flux values on the boundaries.

Different time integration methods, such as implicit and explicit Euler, can be

used to advance the approximate solution in time. In a number of experiments120
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in this work, the Crank-Nicolson time advance scheme is utilized as presented

in Equation 4 (the bar notation is dropped for convenience).

δ~U

δt
:=

~Un+1 − ~Un

δt
=

1

2

(

~R(~Un+1) + ~R(~Un)
)

(4)

where ~U = {U1, U2, . . . , Uk} is the vector of control volume averages, ~R is the

residual vector, and δt is the time-step selected for each iteration. Linearization

of this equation results in the following approximation,125

(

1

δt
I −

1

2

∂ ~R

∂~U

)

δ~U = ~R(~Un) (5)

In Equation 5,
∂ ~R

∂~U
is the Jacobian matrix which can be calculated using

finite difference or chain rule differentiation and was first used for unstructured

finite volume methods by [19] as presented in Equation 6.

A :=
∂ ~R

∂~U
=

∂FluxInt

∂Flux

∂Flux

∂RecSol

∂RecSol

∂RecCoef

∂RecCoef

∂PVars

∂PVars

∂CVars
(6)

where FluxInt is the flux integral, Flux are the numerical fluxes, RecSol are

the reconstructed solutions at Gauss points, RecCoef are the reconstruction130

coefficients, PVars are the control volume averages of the primitive variables

used in the reconstruction, and CVars are the control volume averages of the

conserved variables [19]. Forming the Jacobian matrix explicitly can be useful;

however, only the product of this matrix with different vectors is necessary for

the purpose of this study, and this can be computed through a matrix free135

approach.

2.2. Stability Analysis

Lyapunov stability theory [9] is used for stability analysis of the linear solver

in the present study. Consider a dynamical system that satisfies the following

equation.140

ẋ = f(x, t), x(t0) = x0, x ∈ R
n (7)

Assume that f(x, t) satisfies the standard conditions for the existence and

uniqueness of solutions. A point x∗ ∈ Rn is an equilibrium point of this system
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if f(x∗, t) = 0. Shifting the origin of the system allows us to conveniently have

the equilibrium point at x∗ = 0. Hence, Equation 7 is stable in the sense of

Lyapunov at t = t0 if for any ǫ > 0 there exists a δ(t0, ǫ) > 0 such that,145

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ǫ, ∀t ≥ t0 (8)

The second method of Lyapunov (direct method) determines the stability of a

system without explicit integration. The method implies that if there is some

measure of energy in a system then the rate of change of energy can be studied

as a means of stability analysis. Let E(x, t) be a non-negative function with

derivative Ė along the trajectories of the system. If E(x, t) is locally positive150

definite and Ė ≤ 0 locally in x and for all t, then the origin of the system is

locally stable (in the sense of Lyapunov) [9].

Systematic methods for estimating the bounds on the region of attraction

of equilibrium points of the non-linear system have been an important area of

research that involves searching for the best possible energy function [20, 21].155

The present study uses a notion similar to the kinetic energy of dynamic systems

as the Lyapunov function. Take the averaged vector of solution in control volume

i as Ui. We can define the following energy function (Einstein notation),

E :=
UiUi

2
(9)

Then for homogeneous systems of degree one such as the advection, Euler, and

Navier-Stokes problems the rate of change in energy is,160

dE

dt
= Ui

dUi

dt
= UiAijUj (10)

If the energy function of our system of equations is always decreasing, then we

have a strictly stable solution.

Furthermore, the indirect method of Lyapunov uses the linearization (if it

exists) of a system to determine the local stability of the original non-linear

system. Consider the system presented in Equation 7 with f(0, t) = 0 for all165

t ≥ 0. The Jacobian matrix can be defined as,

A(t) :=
∂f(x, t)

∂x

∣

∣

∣

∣

x=0

(11)
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Now assume,

lim
‖x‖→0

sup
t≥0

‖f(x, t)−A(t)x‖

‖x‖
= 0 (12)

Further, let the Jacobian matrix be bounded. If 0 is a uniformly asymptotically

stable equilibrium point of the linearized system of equations, then it is a locally

uniformly asymptotically stable equilibrium point of Equation 7. The reader is170

referred to [9] for details of Lyapunov stability theorem. The indirect method

implies that if the original system is time-invariant and the eigenvalues of the

Jacobian matrix are in the open left half of the complex plane, the system is

asymptotically stable. As a result, the eigenanalysis of the Jacobian matrix

indicates whether the semi-discretized system is stable or not (or has defective175

convergence), even before starting the solution procedure. Further, we know

that the Jacobian of a discrete system depends on the mesh. This means that

changing the vertex locations in the mesh can potentially change the eigenspec-

trum of the Jacobian which in turn can be utilized as a powerful tool in the

stabilization of unstable solutions as demonstrated in [5].180

2.3. Eigenanalysis

Eigenanalysis has been a useful and essential element in computational fluid dy-

namics from the beginning of this chapter of science. Optimal mesh generation,

stability and convergence analysis, numerical error estimation, and flux vector

calculation are a few examples [5, 22, 23]. Most eigenvalue solvers are based185

on iterative methods that utilize computationally cheap matrix-vector products

instead of matrix-matrix operations or finding the matrix inverse. In general,

iterative methods produce more accurate results with each iteration.

Efficient and fast eigenanalysis of large sparse matrices (resulting from finite

volume discretization) is a critical aspect of the present study and one of our190

main concerns. In our optimization algorithm, only the eigenvalues with positive

real parts are usually required. Utilizing proper methods to search in the right

open-half of the eigenspectrum can reduce the solution time substantially. We

utilize spectral transformation techniques such as Cayley and shift-and-invert

methods to isolate the rightmost eigenvalues from the rest. The Krylov-Schur195
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method [24] is used for the calculation of the eigenvalues. As the primary tool

of eigenanalysis in the present study we use the Scalable Library for Eigenvalue

Problem Computations, SLEPc [25], a software library that provides powerful

tools for the solution of large sparse eigenvalue problems. This package is an

extension of the Portable, Extensible Toolkit for Scientific Computation, PETSc200

[26], and can be used for linear eigenvalue problems with both real and complex

arithmetic.

The nonzero vector x ∈ Cn is a right eigenvector of A ∈ Cn×n if

Ax = λx (13)

In this equation λ is an eigenvalue associated with the eigenvector x. Equation

13 is a standard algebraic eigenvalue problem. Further, a nonzero y ∈ Cn is a205

left eigenvector of A if the following is true,

yHA = λyH (14)

in which, yH is the conjugate transpose (Hermitian transpose) of y. In the

present study, the eigenvectors are normalized to have an L2 norm of 1.0.

2.4. Vertex Selection

The selection of vertices for modification is an important aspect of our optimiza-210

tion approach. The presented algorithm is capable of modifying all the vertices

inside the mesh. Doing so on an originally unstable problem results in a stable

solution, with the only drawback being the high computational cost. Further,

according to our eigenvalue gradient analysis in Section 2.5 only certain parts

of the mesh are responsible for the problematic eigenmodes. In our experience,215

solely local changes in the mesh will result in a stable eigenspectrum which also

depicts the point. To quantify this, we have computed the eigenvalue gradient

of the Jacobian matrix for an Euler problem with two unstable eigenvalues on a

2D unstructured mesh around the NACA-0015 airfoil with 600 control volumes

(Section 2.5 presents details on the computation of eigenvalue gradients). Figure220

1 depicts the gradient magnitude of the rightmost eigenvalue, λ = 0.9633 + 0I,
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with respect to the movement of each vertex in the mesh. As seen, the gradient

is highly concentrated in a certain part of the mesh. The gradients further away

from the airfoil are close to zero. As a result, choosing only certain vertices in

the mesh is a viable option for mesh optimization. This approach will produce225

a much faster optimization procedure due to the limited number of vertices

chosen to execute the calculations on. The unstable eigenmodes may simply

include an unstable physical phenomenon or (more interestingly in the scope of

the present study) a defective local mesh structure. It is noteworthy that the

defectiveness of the mesh cannot always be explained through traditional mesh230

quality measures as we will show in Section 2.6.
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(a) The gradient with respect to x.
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Figure 1: The gradient magnitude of λ = 0.9633 + 0I with respect to the movement of each

vertex in the mesh (note that the color contours are logarithmic).

Finding the right vertices to move in the problematic parts of the mesh

is our next challenge. We know that an eigenpair of the Jacobian matrix is

a mode of the solution. As a result, the right eigenvector points to cells in

which that eigenmode is large. As suggested by [5], the largest component235

of the eigenvector associated with an eigenvalue with a positive real part can

be utilized to find the control volumes of interest. Then, all the vertices of

these cells as well as the control volumes in their Jacobian fill are selected
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for modification. This method, though still not time- and resource-efficient

enough, can also produce optimized meshes. The number of vertices in this240

methodology grows with stencil size. Further, there is an increased chance of

finding contradicting eigenmodes, where stabilizing an eigenvalue with a positive

real part will destabilize another eigenvalue that was originally stable.

The present study introduces an original approach to vertex selection as

part of the novel optimization algorithm herein. The first step in the novel245

method is to find the problematic eigenvalues (with a positive real part) and

extract the right eigenvectors associated with them which we will refer to as the

unstable eigenvectors. Each unstable eigenvector is shaped like (pointing to)

a different unstable mode in the solution at the current state. As a result, an

unstable eigenvector has large components in the cells that contribute to that250

unstable mode while having small values (negligible) in other cells. As depicted

in Figure 1, the instabilities are highly local to a certain part of the mesh which

results in these cells being neighbors and sharing faces and vertices. In the next

step, the summation of absolute values of the unstable eigenvector component

in all the adjacent cells to a vertex is used as a selection weight for that vertex.255

This measure has proved to be a plausible approximation of the probability

of a vertex having the largest eigenvalue gradient and hence being the most

effective in eigenspectrum modification for stability. Finally, the single vertex

with the largest weight measure is selected for modification and stabilization of

the unstable eigenvector in question.260

Note that searching the full domain of the solution is not necessary as only

the region near the largest eigenvector component can contain the vertex whose

movement will most affect stability. It is recommended to only perform the

above-mentioned calculations in an area near the cell with the largest unsta-

ble eigenvector component. Contrary to [5], selecting only a single vertex for265

each unstable eigenvalue reduces the computational resources required for the

optimization procedure and improves the efficiency of the method. The number

of vertices to move in the new methodology does not increase with problem or

stencil size which is another advantage over the previous method.
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The inviscid Burgers problem,
∂u

∂y
+u

∂u

∂x
= 0, is solved on a rectangular do-270

main with the boundary conditions shown in Figure 2. Throughout this paper,

u(x, y) = 1 is selected as the initial conditions for the inviscid Burgers problem

on this domain. The Jacobian matrix of this problem on a 2D unstructured

mesh with 500 control volumes (Figure 3) has only one unstable eigenvalue of

λ = 11.9979 + 0I. Figure 4 depicts the selection procedure of a single vertex275

for modification in this problem. In Figure 4a the absolute value of the right

eigenvector components in different cells are presented. In Figure 4b the con-

tributing weights from each cell on an incident vertex are summed up and the

result points to a single vertex of our interest (indicated with a white circle).

y
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0.5
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π0.0

u(x, y)

u
(0
,y
)
=

0

u
(π
,y
)
=

0

∂u

∂y
= 0

u(x, 0) = − sin(x)

Figure 2: The physical domain and boundary conditions of the Burgers problem.
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0.5π π0

0.5

Figure 3: The unstructured mesh with 500 control volumes for the solution of the Burgers

problem.
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Figure 4: The vertex selection weight in the Burgers problem on a mesh with 500 control

volumes (note that the color contours are logarithmic).

2.5. Eigenvalue Gradient280

According to the indirect method of Lyapunov, any eigenvalue of the Jacobian

matrix that has a positive real part is an unstable eigenmode, which needs to be

mitigated. The idea here is to use movements in certain mesh vertices to push

those unstable eigenvalues in the eigenspectrum of the Jacobian to the open left

half of the complex plane. This task requires a knowledge of how eigenvalues285

behave with respect to the movement of those special vertices. As a result,

the eigenvalue gradients with respect to vertex movement are required in our

optimization procedure. The gradients can then be utilized to find the direction

and magnitude of vertex movement to push the unstable modes to the desired

stable values. Moreover, the imaginary part of the spatial eigenvalues in the290

Jacobian matrix causes oscillations in the solution residual [27] and can change

the amplification factor (hence the convergence rate) of the fully discrete prob-

lem. Our stabilization method can also be utilized to mitigate such unnecessary

and potentially dangerous vibrations in the solution error which is a subject for

future work.295
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The gradients of eigenvalues with respect to mesh coordinates, ζ, can be

computed directly using the finite difference method. However, this approach

will require many solutions of Equations 13 and 14. Ideally, we avoid the solution

to the eigenproblem as much as possible since this is the most time-consuming

part of our mesh optimization program. The Jacobian matrix A is a function300

of both the solution vector ~U and the mesh coordinates ζ. We can find the

gradients of eigenvalues with respect to ζ following the procedure presented by

[28, 29, 30].

dλ

dζ
= yH dA

dζ
x (15)

This equation is considerably more efficient to utilize than the direct finite

difference approach. In this case, we only need to solve the eigenvalue problem305

once to find the eigenvectors. The term
dA

dζ
in Equation 15 can be computed

as follows,
dA

dζ
=

∂A

∂U

∂U

∂ζ
+

∂A

∂ζ
(16)

We assume that at steady-state conditions, the changes in solution with respect

to changes in the mesh, is much smaller than one. This means the first term

in the equation is negligible compared to the second term. To show this, we310

have performed tests on many different meshes to solve the Euler and Burgers

problems. A stable solution is carried out and with the help of our vertex

selection method, the vertex corresponding to the least stable eigenmode is

chosen. Through modification of this vertex, we can solve the problem until

convergence again and find the derivative term in question. Infinity norm (L∞)315

of solution change is utilized for this purpose. Figure 5 shows the derivative

in both x and y directions versus mesh size for an Euler problem. As depicted

here, the derivatives are at least 3 orders of magnitude smaller than the gradients

presented in Figure 1 which proves our point. Figure 6 shows the same results

for a Burgers problem in which the derivative is of negligible magnitude too.320
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Figure 5: Derivative of solution with respect to mesh movement versus mesh size in an Euler

problem.
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Figure 6: Derivative of solution with respect to mesh movement versus mesh size in a Burgers

problem.

As a result, we can approximate the derivative of the Jacobian matrix with

respect to mesh movement,
dA

dζ
, readily using the finite difference method.

dA

dζ
≈

∂A

∂ζ
=

A(ζ + δζ)−A(ζ)

δζ
(17)

Moving each vertex in the mesh only affects the flux residual of the cells that

contain that vertex in their reconstruction stencil. As a result, for the calculation

of
dA

dζ
only a small number of rows in the Jacobian matrix are recalculated with325

each iteration. Such information is available from the sparsity pattern of the
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Jacobian matrix. The non-zero elements in each row of the Jacobian represent

the control volumes in that specific flux residual.

The next issue in our study is to choose certain vertices (in the suggested

list according to Section 2.4) to find the eigenvalue gradients with respect to.330

Different approaches include finding the gradients with respect to all the sug-

gested vertices, a selected number, or only a single vertex. Choosing the right

vertices for this purpose will have a significant effect on the time required for the

optimization procedure. To demonstrate this point, we have selected a Burgers

problem on a 2D unstructured mesh with 1100 cells and 5 unstable eigenvalues.335

The eigenspectrum of the Jacobian matrix is presented in Figure 7a and the un-

stable eigenmodes are indicated with letters. Following the procedure presented

in Section 2.4, 5 vertices are selected to be moved which are indicated in Figure

7b. The gradients of the unstable eigenvalues with respect to the movement

of all the suggested vertices simultaneously are presented in Table 1. Table 2340

presents the gradients of the unstable eigenvalues with respect to the movement

of only vertex a. The eigenvector associated with λa = 20.9993 + 0I was used

to find the vertex a. According to Table 2, the gradients of all eigenvalues other

than λa with respect to the movement of the vertex a are negligible. This shows

that finding the gradient of an eigenvalue with respect to the movement of the345

associated vertex is adequate for use in the stabilization algorithm. Further,

this confirms that the gradients of eigenvalues with respect to non-associated

vertices are minute and each unstable eigenmode is local to a certain part of the

mesh. Furthermore, comparing the results of Tables 1 and 2 shows that finding

the gradient of eigenvalues with respect to the movement of a single vertex gives350

a very similar result to finding the gradients with respect to the movement of

all vertices. We utilize the latter since it is much more computationally efficient

and the results can be used for individual vertex movement.
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Figure 7: A Burgers problem on a mesh with 1100 control volumes and 5 unstable eigenmodes.

Table 1: The gradient of eigenvalues with respect to the movement of all the suggested vertices,

simultaneously.

Eigenvalue Gradient w.r.t. x Gradient w.r.t. y

λa 20.9993+ 0I 7987.76+ 0I 1213.48 + 0I

λb 14.6780+ 0I 8924.53+ 0I 1483.23 + 0I

λc 8.7831 + 0I 7658.86+ 0I 2656.88 + 0I

λd 1.1932 + 4.8081I 2260.66− 3976.23I 978.00− 1734.37I

λH
d 1.1932− 4.8081I 2260.66 + 3976.23I 978.00 + 1734.37I

λe 0.4764 + 0I 437.90 + 0I 126.02 + 0I
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Table 2: The gradient of eigenvalues with respect to the movement of vertex a.

Eigenvalue Gradient w.r.t. x Gradient w.r.t. y

λa 20.9993 + 0I 7987.75 + 0I 1213.66 + 0I

λb 14.6780 + 0I 0 + 0I 0 + 0I

λc 8.7831 + 0I 0 + 0I 0 + 0I

λd 1.1932 + 4.8081I 0 + 0I 0 + 0I

λH
d 1.1932− 4.8081I 0 + 0I 0 + 0I

λe 0.4764 + 0I −1.54 + 0I 0.36 + 0I

2.6. Mesh Modification

Utilizing the eigenvalue gradient with respect to the mesh movement vector, we355

can modify the real part of the unstable eigenvalue and push it to the stable part

of the eigenspectrum through the method of steepest descent. This methodology

also enables us to modify the imaginary part of the eigenvalues for controlled

oscillations in the residual history. Refer to [27] for the effects of the imaginary

part of the eigenvalue on the residual oscillations. A truncated Taylor series is360

used for mesh modification and to push the eigenvalue λ to the new value λnew,

λnew = λ+
dλ

dζ
δζ (18)

The goal is to move the unstable eigenvalues (with positive real parts) to the

left side of the eigenspectrum. The dominant eigenmodes (right-most values)

dictate the overall behavior of the residual as presented by [27]. As a result, our

approach is to move the undesirable eigenmodes of the complex plane to the365

left side until they are not dominant anymore. One should also pay attention

to and account for non-linear effects.

Shifting the eigenvalues as far to the left as possible will result in a more

stable numerical solution. However, there should be a limit for mesh vertex

movement to prevent the formation of defective cells with negative volumes.370

A characteristic length scale such as the length of the shortest edge incident

on each vertex can be defined and used to limit the vertex movement. This
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issue is more significant while tackling meshes that contain high aspect-ratio

and highly skewed control volumes. Boundary layer and turbulence problems

are among these applications in which high aspect-ratio cells are prominent. In375

such cases, there is a limit on how much a single vertex can be moved before

getting a defective control volume. Further, in an adaptive mesh modification

approach, error minimization methods are used to modify the elements [31, 32]

which might give contradicting vertex movement vectors with the optimization

approach. Fortunately, in most problems, movement vectors from mesh opti-380

mization are much smaller than those from adaptive methods. This enables us

to perform optimization without impeding other modification methods.

For an accurate numerical solution during the mesh optimization process,

the boundary geometry must remain intact. For this reason, if a vertex on

the boundary is suggested for modification, the movement vector should be re-385

stricted to the boundary. This might hinder the effectiveness of a boundary

vertex movement in the optimization. However, our approach to finding ver-

tices for modification usually does not return any vertices that are located on

the boundaries. The boundary vertices are usually incident on fewer cells than

the ones inside the domain which decreases their selection chances. On the other390

hand, if the suggested vertex is on the boundary and the allowable vertex move-

ment is normal to the optimal gradient (very low probability) our optimization

methodology is still applicable with slight modifications. The first solution in

such cases is to change the vector direction so that the eigenmodes are pushed

to the stable side of the spectrum with possibly different imaginary values. We395

can also select other vertices to modify as a second solution to such an issue.

The presented optimization approach nominates the vertex that has the great-

est effect on stability (largest gradient). However, other vertices (usually a local

selection) affect the stability of that certain eigenmode as well and can be used

for modifications.400

Traditionally, different geometric and physical factors are considered in re-

liable unstructured mesh generation. The best of these techniques are the ones

that encapsulate the knowledge and experience of experts in a specific scientific
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field. An unstructured mesh that is considered “good” for a certain physical

problem can be considered “bad” for a different problem in the same domain405

of solution. Deciding factors include the physical problem, numerical approach

(Finite Element, Finite Difference, or Finite Volume), boundary conditions,

presence of shocks and other discontinuities inside the domain, and so on. As a

result, it is implausible to decide whether a particular mesh is an optimal grid

for a specific application solely based on traditional mesh quality measures, such410

as the minimum and maximum internal angles of a cell, aspect ratio, shortest

edge to circumcircle, and Marcum’s sliver and skewness measures [33, 34, 35].

Such mesh quality measures can sometimes be deceptive, with meshes consid-

ered “good” leading to divergence of the solution. We have devised a test of the

Burgers problem of Section 2.4 on a 2D unstructured mesh which is generated415

utilizing the aforementioned quality measures. Using the Crank-Nicolson time-

stepping method, the solution on the “high quality” mesh is unstable. However,

changing the location of a single vertex exaggeratedly (without taking the geo-

metric quality measures into account), leads to a stable solution. The traditional

high quality mesh and the modified version are presented in Figure 8 and the420

residual history is presented in Figure 9. The highly skewed cell depicted in

Figure 8b has an internal angle close to π which is considered extremely defec-

tive according to the traditional mesh quality measures. Nonetheless, the latter

mesh results in a stable numerical solution.
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(a) The traditional high quality mesh.
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(b) The low quality mesh.

Figure 8: Two unstructured meshes for the solution of the Burgers problem.
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Figure 9: The residual history of the Burgers problem on traditional high quality and low

quality meshes.

2.7. Pseudo-Transient Continuation425

Implicit time integration methodologies allow the use of large time steps. A key

issue in the implicit upwind method for the solution to the Euler problem is

balancing large and small time steps for faster convergence and sufficiently re-

solving intricate flow features, respectively. Different methods are presented for

choosing Courant-Friedrichs-Lewy (CFL) numbers during an implicit solution;430
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Exponential Progression, Switched Evolution Relaxation, and Residual Differ-

ence Method [36]. Further, Newton’s method is a famous fixed-point iterative

method for the solution of such non-linear problems which results in a quadratic

convergence rate [37]. Combining this method with an iterative Krylov solver

(e.g. GMRES) for solving the linear system of equations, results in an inexact435

Newton method [38]. Even in this case, the convergence rate can be super-linear

or even quadratic. However, it is established that Newton’s method does not

converge unless we start from a suitable initial guess. Obtaining the initial guess

is known as globalization and can be performed using a continuation method.

A global time step or a CFL-based local time step can be utilized to achieve440

globalization. Implementing a pseudo-time stepping method increases the ro-

bustness of globalization. Using a time step that scales with local residual will

result in reducing the number of iterations required for convergence [19].

Non-linear problems might exhibit unstable eigenmodes in the early stages

of solution due to the initial conditions. The unstable modes resulting from the445

initial conditions are usually mitigated while using a CFL evolution strategy.

However, there can still be other unstable modes near the converged solution

that will result in divergence and require stabilization through the methodology

discussed herein. In the present paper, the Crank-Nicolson method, as well

as the implicit Euler time-stepping with CFL evolution are utilized for time450

integration in different cases. The results show the robustness of our novel

optimization approach in conjunction with multiple implicit methods of time

marching.

2.8. Probability of having Unstable Modes

Different problems are tested on numerous meshes to study the probability of455

unstable modes given certain solver conditions and mesh generation method. We

have utilized the Generation and Refinement of Unstructured, Mixed-Element

Meshes in Parallel (GRUMMP) software [39] to generate many meshes of various

sizes. Different problems were initialized on these meshes and with the help

of the stability analysis tool presented herein, the stability of the problems460
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was established. As such, the ratio of unstable cases to stable ones can be

determined.

100 different meshes are generated on the domain presented in Figure 2 for

the Burgers problem. The number of cells in these meshes ranges from 60 to

125000. Using second-order reconstruction and the boundary conditions pre-465

sented in the same figure, the number of unstable modes are extracted after one

iteration of the solver. Figure 10 shows a histogram of the number of unsta-

ble modes present in different cases. Over 80% of the tests in this experiment

include unstable modes.
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Figure 10: Probability of unstable modes in a second-order Burgers problem.

In another experiment, 100 different meshes are generated around the NACA-470

0015 airfoil for the Euler problem with the number of cells ranging from 1000

to 50000. Using second-order reconstruction the number of unstable modes are

extracted after one iteration of the solver. Figure 11 shows a histogram of the

unstable modes present in each test. Over 80% of the cases in this experiment

include unstable modes. The Euler problem is non-linear which can exhibit475

unstable modes resulting from initial conditions as well as undesirable modes

near the converged solution. To differentiate between the two, we have utilized

our CFL evolution strategy (Section 2.7) to solve the problem on the same 100
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meshes. In this test, 23% of the cases exhibited unstable modes near the con-

verged solution. Using a pseudo-transient continuation strategy was to no avail480

in these cases.
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Figure 11: Probability of unstable modes in a second-order Euler problem.

3. Run-Time Mesh Optimization

Our optimization scheme is usually capable of stabilizing an originally unsta-

ble solution in only one iteration at the beginning of the simulation. However,

for non-linear problems the eigenvalues of the Jacobian matrix change as the485

solution advances in time. As a result, a problem can develop new unstable

eigenmodes in the later stages of the solution. Figure 12a shows the real part

of the largest eigenvalue of a Burgers problem with solution iteration. Figure

12b depicts the same phenomenon in a 2D Euler problem where eigenmodes are

becoming stable and unstable without any specific pattern. This calls for a more490

flexible stabilization scheme that can cope with such changes in the eigenspec-

trum during the simulation. Further, there are solutions in which stabilizing

unstable eigenmodes result in destabilizing other originally stable eigenvalues

with an example Euler problem presented in Figure 13. As seen in Figure

13a, the original solution is unstable and diverges at iteration 760. Pushing495

the real part of all the unstable eigenvalues to −10 at iterations 150 and 400
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produces solutions that are still unstable. This process moves some originally

stable eigenvalues to the right side of the spectrum. It is noteworthy that both

of the new solutions follow similar trends after iteration 1000 which shows the

same new unstable mode in these residual histories. The eigenspectrum of the500

Jacobian matrix is presented in Figure 13b and depicts the new unstable eigen-

values after the first iteration of the optimizer. Such opposing eigenmodes have

deleterious effects on convergence and at first sight, they might seem impossible

to remediate. However, in our experience, these new unstable eigenmodes result

in instability at a later iteration which can be stabilized then.505
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(a) One positive eigenvalue in a 2D Burgers
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(b) Two positive eigenvalues in a 2D Euler

problem.

Figure 12: The changes in real part of the positive eigenvalues with solution iteration.
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Figure 13: An Euler problem in which optimizing one eigenmode destabilizes another one.

Considering the aforementioned issues, we propose a novel approach for run-

time mesh optimization. The idea is to optimize the numerical grid as we

progress in the solution. In this outlook, the stabilization program has the state

of the solution with an acceptable residual from a few iterations back saved

and ready to be called upon when required. Generally, the iteration with the510

lowest residual works most effectively in the optimization. When divergence

occurs, the optimizer performs one iteration of stabilization on the saved state

and then starts iterating from there. The stabilization process involves pushing

eigenvalues with positive real parts to the left side of the eigenspectrum. This

methodology is a robust approach when considering poorly conditioned eigen-515

modes in an unstable solution and handles the above-mentioned issues very well.

This technique can also be effective when applied to slow converging solutions.

In such cases, the problematic eigenmodes, which usually have small negative

real parts, are identified and pushed further to the left side of the spectrum for

faster convergence.520
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4. Results

This section provides a deep insight into the results obtained from the novel

unstructured mesh optimization application. Mesh modification is utilized on

different computational problems, the feasibility of run-time mesh optimiza-

tion approach is evaluated, and lastly, the improvements in computational time525

compared with the results of [5] are presented.

4.1. Mesh Optimization

The test case presented in Section 2.6 and Figure 8a is utilized as our initial

experiment. An overview of the original high-quality mesh is presented in Figure

14a. The original solution on this mesh is unstable as depicted in Figure 14b.530

Only one iteration of the optimization program at the beginning of the solution

pushes the sole unstable eigenmode to the negative real parts of the spectrum,

by moving a single vertex in the mesh, and results in a stable solution. The

modified mesh and new residual history are presented in Figures 14a and 14b,

respectively. The eigenspectrum of these two solutions are presented in Figure535

15. In this test, the only unstable eigenvalue is pushed to λ = −10 + 0I.
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(a) The numerical mesh.
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(b) The residual history.

Figure 14: The optimization of a Burgers problem with 500 control volumes.
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Figure 15: The eigenspectrum of the semi-discrete Jacobian matrix of a Burgers problem with

500 control volumes.

In another experiment, the test case of Figure 6 in [5] is evaluated. This

inviscid Burgers problem is solved in a rectangular channel on an unstructured

mesh with 1400 control volumes. The eigenspectrum of the original semi-discrete

Jacobian matrix is presented in Figure 16. There are two unstable eigenmodes540

in the spectrum and pushing them to λ = −5 + 0I results in a stable solution.

The residual history of the solution before and after the first optimization is

presented in Figure 17a. The comparison with the results of [5] shows similar

convergence behavior with a slight difference that is likely due to the different

approach in choosing vertices to move and the general optimization strategy.545
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Interested readers can refer to [5] for the details of their work. However, the

convergence rate is still quite slow and can be improved. The main cause of this

behavior is the single eigenvalue with a small negative real part located on the

left side of the imaginary axis. Using our optimization program to modify this

eigenvalue and push it to λ = −5+0I in a second optimization step results in a550

much faster convergence rate which is depicted in Figure 17a. The original and

optimized meshes are presented in Figure 17b.
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Figure 16: The eigenspectrum of the semi-discrete Jacobian matrix of a Burgers problem with

1400 control volumes.
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Figure 17: The optimization of a Burgers problem with 1400 control volumes.

The next experiment is conducted on an Euler problem solved over the

NACA-0015 airfoil on an unstructured mesh with 600 control volumes. This

problem includes four unknowns, density, momentum in x and y directions, and555

energy. In the initial solution for this problem throughout the paper, density

is set to 1, velocity in (x, y) direction to M∞(cos(α), sin(α)), and pressure to

Piso. In these relations, M∞ is the free stream Mach number, α is the angle

of attack, and Piso is the resulting pressure during isotropic expansion to M∞.

The semi-discrete Jacobian contains two unstable eigenmodes which can be seen560

in Figure 18. The original solution is unstable at iteration 460 using the Crank-

Nicolson time-stepping method and a CFL of 1. The optimization at iteration

100 of the Krylov solver pushes the unstable eigenmodes to λ = −10 + 0I and

results in a stable solution as depicted in the residual history of Figure 19a.

The original and modified meshes are presented in Figure 19b. This problem565

contains unstable modes that are not emerging from the initial conditions. As a

result, using the implicit Euler time integration and CFL evolution strategy still

results in an unstable behavior as seen in Figure 20a. The application of our

optimization approach at the first iteration of the implicit solver gives a stable

solution that converges in 7 iterations in total. The original and modified meshes570

are presented in Figure 20b. Further, in such non-linear problems, significant
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variations in the state of the solution (e.g. angle of attack, Mach number, and

geometry) will cause changes in the eigenspectrum of the Jacobian matrix. As

a result, the presented methodology only guarantees local stability and we must

perform the eigenanalysis again for large changes in solution state.575
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Figure 18: The eigenspectrum of the semi-discrete Jacobian matrix of an Euler problem with

600 control volumes.
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(b) The numerical mesh.

Figure 19: The optimization of an Euler problem with 600 control volumes and Crank-Nicolson

time integration.
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(a) The residual history.
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(b) The numerical mesh.

Figure 20: The optimization of an Euler problem with 600 control volumes and implicit Euler

time integration with CFL evolution.

To illustrate the impact of the physical problem on stability, we look at

two different problems on the same mesh. A rectangular channel containing

an unstructured high-quality mesh with 1100 cells is selected. The Burgers and

Advection problems are solved on this mesh and the residual history is presented

in Figure 21. The eigenspectrums of these two solutions are presented in Figure580
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22. As seen, the original Burgers problem has five unstable eigenmodes while

the Advection problem does not contain any. This confirms that problem type

affects the stability of the solution and should be considered in the optimization

scheme. One iteration of the optimizer at the beginning of the solution to the

Burgers problem modifies all the unstable modes and gives a stable solution as585

presented in Figure 21.
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Figure 21: The residual history of two different problems on the same mesh.
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Figure 22: The eigenspectrum of two problems on the same mesh.

The optimization scheme is also applicable to larger problems with a higher

number of control volumes. An Euler problem around the NACA-0015 airfoil,

at zero angle of attack and Mach number 0.5, on an unstructured mesh with

7600 control volumes is selected for this experiment. The solution includes four590

unknowns which makes for 30400 equations in the eigensystem. The original

solution is unstable with one eigenmode of λ = 23.7330 + 0I. Pushing this

eigenmode to λ = −100 + 0I (for a large vertex perturbation) at the iteration

with minimum residual of the original solution (iteration 300) produces a stable

solution as depicted in the residual history of Figure 23a. The original and595

modified meshes are presented in Figure 23b.
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Figure 23: The optimization on an Euler problem with 7600 control volumes.

4.2. Run-Time Mesh Optimization

Figure 13 in Section 3 shows an Euler problem in which the application of the

stabilization process to push the real part of the unstable eigenvalues to −10

destabilizes other originally stable modes. One might conclude that pushing600

the unstable eigenmodes to −10 is a sudden large change in the eigenvalues and

that might be the cause of the new instabilities. However, moving the unstable

modes to a smaller value, such as −1, still produces new instabilities. The main

cause of this phenomenon is the opposing eigenmodes in that specific state of

the solution. In such cases moving a vertex that stabilizes a certain unstable605

mode, has deleterious effects on some other originally stable eigenvalue. To

overcome these difficulties, the idea of run-time mesh optimization is utilized in

which the program has the state of the solution with the lowest residual check

pointed. When the solution diverges, we can go back to the saved state and run

the optimization program once to push as many positive-real-part eigenvalues610

to the left side of the spectrum as possible. Going forward, we will save the

next minimum residual state and look out for divergence. This approach stabi-

lizes all the cases in our study that contain opposing eigenmodes and prevents

unexpected divergence due to the solution-based changes in the eigenspectrum.

It also ensures the minimum number of optimization iterations required for a615
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stable solution. Typically, the optimization scheme presented herein is capable

of optimizing an unstable solution in only one iteration of the program. For a

similar Euler problem, the method presented in [5] takes 34 iterations.

Let us go back to the Euler problem presented in Figure 13 around the

NACA-0015 airfoil on an unstructured mesh with 1000 control volumes, which620

is originally unstable with the lowest residual at iteration 150. Running the

optimization program to push the real part of the unstable modes to −10 intro-

duces new unstable eigenvalues. The new minimum residual is at iteration 755

at which performing the second optimization step produces a stable solution

with no eigenvalues on the right side of the spectrum. The residual history of625

the optimized solution and the mesh modification are presented in figures 24a

and 24b, respectively.
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Figure 24: The optimization of an Euler problem with 1000 control volumes.

The Euler problem is solved in a rectangular channel over a bump on a mesh

with 1500 triangular cells. The solution using Crank-Nicolson time-stepping

method is unstable in only 20 iterations. The optimization program pushes the630

eigenvalues with positive real parts to the left side of the spectrum and the new

solution is stable for about 130 iterations. This problem also includes opposing

eigenmodes which means the first stabilization iteration destabilizes some other
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modes. However, our approach vigorously remediates this behavior and pushes

the newly destabilized modes to the left side of the spectrum at iteration 90.635

The residual history of the optimized solution and the mesh modification are

presented in figures 25a and 25b, respectively.
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Figure 25: The optimization of an Euler problem with 1500 control volumes.

An issue that might occur for the stabilization of very large problems is the

increased computational cost of eigenanalysis which can hinder the optimization

process. In such problems, we can utilize the idea of run-time mesh optimization640

to our benefit. In this approach, we can partially solve the eigenproblem and

use any unstable eigenvalues that are found for the optimization. Then, at later

stages of the solution, we can solve the eigenproblem again to find the remaining

unstable modes. Here, we are not focusing on finding all the unstable modes

at once. Instead, we try to find a subset of these modes. In each iteration of645

the optimization, we find as many unstable modes as computationally feasible

which help us spread the workload over multiple iterations of the linear solver.

To depict this approach, we have performed the stabilization on an Euler

problem on a mesh around the NACA-0015 airfoil with 29000 cells. The original

solution is unstable as depicted in Figure 26. Implicit Euler time integration650

with CFL evolution is used for the solution of this problem. The first step
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of the optimization is carried out at iteration 10 of the solution. To stabilize

the 2 unstable modes found here, a single vertex is relocated near the trailing

edge of the airfoil as depicted in Figure 27a. The new solution is unstable

because not all the modes were found and mitigated to save computational cost655

during eigenanalysis. After 20 more iterations of the solution, the optimization

is performed to find another unstable mode. A single vertex near the leading

edge of the airfoil is relocated to stabilize this mode as shown in Figure 27b. The

solution is stable after 2 iterations of the optimization algorithm as depicted in

Figure 26.660

Iteration

R
es

id
u
al

0 10 20 30 40 50 60 70 80
10

­10

10
­8

10
­6

10
­4

10
­2

10
0

10
2

10
4

Before Optimization

First Optimization Step

Second Optimization Step

Figure 26: The residual history of an Euler problem with 29000 control volumes.
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Figure 27: The optimization of an Euler problem with 29000 control volumes.

4.3. Computational Cost

The computational cost improvement compared to the previous studies is an-

other contribution of the present paper. The optimization process includes three

primary steps which require the most computational time and resources: the

solution of the flow field and Jacobian computation, computation of the eigen-665

values, and computation of the gradients of eigenvalues with respect to vertex

movement. Other less time-consuming steps include finding vertices to move

and perturbation of vertices. The time required for the optimization process is

evaluated for the Euler problem on meshes of different sizes.

Figure 28 summarizes the computational time of different steps in the opti-670

mization algorithm for an Euler problem versus the number of control volumes.

The CPU time requirement of the method presented herein is compared to the

work of [5]. The time graphs reported in [5] are showing only one iteration of

their optimization algorithm. The actual time for their optimization process

would be higher than the reported values. For the same unstable problem, their675

approach will require many optimization iterations (of order 10) in comparison

to the approach presented herein which performs the optimization in a single it-

eration. The CPU time is expected to grow linearly with mesh size as improving

the single iteration performance is not in the scope of the present study. While
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this is true for a single iteration of the optimization algorithm, the overall com-680

putational time is reduced substantially by reducing the number of optimization

iterations required for a stable problem. Further, the time required for finding

the right-most eigenvalue depends on the separation of the eigenvalues in that

region. This explains why less time is taken to solve for the right-most eigen-

value in the two meshes of size 800 and 1400 in our experiment. In these two685

cases, the eigenvalues were better separated by chance which resulted in less

computational time for the eigensolution. The time improvement in the present

study is due primarily to our improved vertex selection method and a more

efficient optimization approach.

To remediate each unstable eigenmode, one vertex is selected to be moved in690

the present study, while [5] chooses all the vertices in the reconstruction stencil

of a cell which on average for a second-order reconstruction are six vertices. The

number of vertices in our methodology does not increase with stencil size and

it has proved to be just as effective in the optimization process while taking

less time to execute. Another aspect of computational time improvement is695

the overall optimization approach. The present study stabilizes eigenmodes by

moving the suggested vertices in a single step, while [5] takes an iteration-based

approach. As seen in Figure 28, the time consumption in one iteration of the

optimization algorithm of the present study is comparable to [5]. Utilizing our

approach in many different cases, this single step is adequate to reach a stable700

solution. In contrast, similar problems in [5] take more than 30 iterations of the

optimization process. Furthermore, the eigensolution for the Euler problem on

a mesh with 7600 cells takes about 8.9 seconds while each iteration of the flow

solver for the same problem on average takes about 0.7 seconds. As a result, in

this case the time required for the solution of the eigenproblem is almost equal705

to 13 iterations of the flow solver which makes it computationally feasible.

The most time-consuming step of the optimization algorithm is the solution

to the large, sparse eigensystem. For a large sparse matrix A ∈ Rn×n, com-

puting m eigenvalues requires a few considerations regarding both storage and

computational cost [25], including the following.710
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1. Storage of at least m subspace vectors of length n.

2. Orthogonalization of the basis vectors, with a computational cost ofO(m2n).

3. Storage of at least one dense projected eigenproblem of size m×m.

4. The solution to the projected eigenproblem with a computational cost of

O(m3).715

Here, the first two points are the most computationally expensive. Requesting

the solution to many eigenvalues increases the computational cost and storage

requirements of the problem substantially. However, our experience shows that

the optimization of unstable problems usually requires the computation of only

a few eigenvalues on the right side of the spectrum which are often well sep-720

arated from the others. This makes finding such eigenvalues of interest less

computationally demanding.
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Figure 28: The optimization time of the Euler problem versus mesh size.

For a given problem, the linear solver requires working with much fewer

subspace vectors than the eigensolver. Developed by Saad and Schultz [40],

GMRES, or generalized minimal residual method, is one of the most well-known725

iterative methods for solving large, sparse, nonsymmetric systems. This method

is used for the solution to the linear system of equations in the present study.

The convergence of GMRES closely depends on the distribution of the eigenval-

ues of the original matrix. At the kth iteration of this method, one matrix-vector

multiplication, k + 1 axpy operations (i.e. ax + y), and k + 1 inner products730

are required. In total, GMRES requires 2n(ℓ+2k+2) floating-point operations

per iteration and the storage of k+5 vectors in addition to the matrix itself. In
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this equation, the average number of nonzero elements of the matrix is denoted

with ℓ which in our case is of O(1).

5. Conclusion735

A novel mesh optimization scheme for the solution of different computational

fluid dynamics simulations, including the inviscid Burgers and Euler problems,

was presented and evaluated in the present study. Utilizing the Lyapunov the-

orem of stability, we identified the unstable eigenmodes in the semi-discrete

Jacobian matrix of the solution. The unstable eigenvectors point to the places740

in the mesh where that mode is growing. A new approach for selecting ver-

tices to perturb is presented herein. In this methodology, a single vertex is

moved to stabilize each unstable mode. The number of selected vertices does

not grow with problem or stencil size which helps with the computational re-

source requirements. Further, using the gradients of the unstable eigenmodes745

with respect to vertex perturbation, these eigenvalues are pushed to the stable

side of the spectrum in one step. This single iteration of the optimization is

often enough to stabilize the solution. While stabilizing certain unstable modes

in some problems, other modes may become unstable. A new approach for run-

time mesh optimization is introduced to remedy such opposing eigenmodes. In750

this procedure, the optimization is applied at the solution state with the lowest

residual when running into divergence. This method has proved to be robust

and can remediate the opposing eigenmodes at intermediate iterations of the

solution.
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