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This work prototypes novel methods to enhance the efficiency of a previous CFD stability
improvement approach. The feasibility of residual vector analysis for unstable solution mode
identification is studied. Unsupervised machine learning models in the form of outlier detectors
are used to identify anomalous vector elements. A novel method is presented to construct
synthetic vectors that resemble unstable eigenvectors. Synthetic vectors are used to find vertices
for modification and calculate the vertex movement direction and magnitude. The residual
vector helps substantially in reducing the computational cost of the optimization algorithm. In
comparison to the full eigenanalysis of the Jacobian matrix, residual vector analysis requires
much fewer computational resources. This methodology is used for the first time for the stability
improvement of finite-volume simulations. It is shown that using residual vector analysis for
the identification of the unstable solution modes and problematic cells in the mesh has a similar
stabilization performance to using the right eigenvectors.

L. Introduction

HE stability analysis and improvement of unstructured finite-volume problems for industrial-scale applications
Tremains a complication of these simulations to date. Such substantial problems often include opposing numerical
requirements due to the size and broad spectral content of the solution. This compels engineers to seek a balance
between the accuracy, stability, and computational cost of the numerical method. Improving stability at modest
computational costs without impacting accuracy shifts this balance in a favorable direction. Consequently, stability
analysis has been a fundamental aspect of unstructured finite-volume methods and the subject of different studies in
this area [[I-3].

In the present study, the Lyapunov stability theory is utilized for stability analysis of the dynamical systems resulting
from the discretization of partial differential equations. According to this theory, the eigenanalysis of the Jacobian
matrix reveals useful information about the local stability of the linear system in question. The eigenvalues that have a
positive real part show the unstable modes of the solution. Such modes can be purely numerical or physically unstable
modes. The right eigenvectors associated with the unstable eigenmodes point to the cells of the mesh in which those
solution modes have significant weights. The magnitude of such unstable modes grows with solution iteration which
will result in the growth of the residual in these cells. The purely real dominant unstable modes exhibit a constant
direction in the residual vector during the simulation process. Detecting such anomalies in the residual vector can help
identify the problematic cells in the mesh. New vectors can be constructed using the residual, resembling the unstable
eigenvectors, to be used for mesh modification to improve stability.

Citro et al. [4] proposed a method based on the minimization of the residual norm at each iteration step with
a projection basis to compute the unstable steady states and/or accelerate the convergence to stable configurations.
Their algorithm was able to improve the convergence of existing iterative schemes. Farhat et al. [5] focused on the
analysis and comparative performance study for nonlinear finite-element models. Their method directly approximates
the scalar projections of residuals and Jacobians. For second-order dynamical systems, this method preserves the
numerical stability properties of the dynamical system. Xu [6] employed SVD on symplectic matrices and presented
a general formula to construct a factorization with the minimal norm and condition number to improve numerical
stability.

Further, eigenanalysis has been an effective tool for the investigation of stability in different dynamical systems in
the past. Wang and Semlyen [[] successfully applied eigenanalysis to the matrices derived for small signal stability
studies of power systems. The resulting matrices in such systems are large, sparse, and non-Hermitian. Lehoucq
and Salinger [R] presented an approach for determining the linear stability of the steady state of PDEs on parallel
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computers. They successfully calculated the eigenvalues with the largest real parts in systems of order up to 4 million.
They achieved this goal using Arnoldi’s eigensolution method [9] driven by a novel implementation of the Cayley
transformation. Morzyski et al. [T0] applied the eigensolution to global non-parallel flow stability. They used subspace
iteration methods to solve the large-dimensional algebraic eigenvalue problem with the inverse Cayley method for
the separation of the eigenvalues of interest. Chen et al. [ILT] presented a stability analysis method for polynomially-
dependent one-parameter systems which is referred to as the eigenvalue perturbation approach. They studied the
asymptotic behavior of the critical eigenvalues on the imaginary axis. This behavior determines whether the pure
imaginary eigenvalues cross from one half-plane into another. Their approach leads to numerically efficient stability
conditions.

Zandsalimy and Ollivier-Gooch [I2] presented novel methods to enhance the efficiency of a previous mesh
optimization approach [I[3] that used the eigenanalysis of the Jacobian matrix and was infeasible for the application of
industrial simulations. The issues have been addressed in [IZ2] by improving the vertex selection strategies as well as
the overall optimization approach. A novel algorithm is also presented therein to remediate the opposing eigenmodes
in a finite-volume solution resulting from large problems. These enhancements greatly reduce the computational cost
of the presented methodology.

In the present work, the main outlook is shifted from the eigenanalysis of the Jacobian matrix to residual vector
analysis. The resulting synthetic solution modes are utilized to identify the problematic cells in the mesh and vertices to
move. We also show the feasibility of using the residual vector for movement vector calculation. This novel approach
dramatically reduces the computational complexity of CFD stability improvement, which was previously dominated
by eigenvalue calculations. We utilize unsupervised anomaly detection algorithms to determine outlier values in the
working vectors to isolate the problematic cells. This machine learning module also helps discover the correct non-
linear solution iteration to apply our optimization algorithm by identifying anomalous behavior in the residual vector.
The results are validated and compared to previous studies which show the improvements achieved through this novel
proposal.

I1. Background

A. Numerical Simulation Scheme
The conservation equation for an arbitrary dependent variable U which is a function of time and a vector of
independent variables ¥ is,
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Here, F is the flux vector and f is the source term. The differential equations are written in divergence form and
integrated over control volumes. With the application of Gauss’s theorem, the volume integration is converted into
a surface integral across the boundaries of an arbitrary cell as presented in Equation . This numerical procedure is
known as the finite-volume method [[4-177].
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In this equation, V; refers to the ith cell with a volume of |V;|, 7 is the unit normal vector to the boundaries, R is the
residual, and U; is the average conservative property inside the cell,
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The conservation property is the main advantage over the weak formulation adopted in finite-element methods [IX, TY].
The following approach is used to calculate the flux integral in with second-order accuracy;
1) Reconstructing a piece-wise linear solution approximation from the piece-wise constant control volume averages
using the linear least-squares method [20].
2) Computing the flux at each quadrature point on the cell’s boundaries. We utilize Roe’s scheme [Z1]] for inviscid
flux calculation.
3) Integrating flux values on Gauss quadrature points.



The boundary conditions are applied weakly using flux values on the boundaries. Crank-Nicolson time advance

scheme is utilized for second-order time integration as presented in (the bar notation is dropped for
convenience).
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in which, U= {U1,Us, ..., U} is the vector of control volume averages and R is the residual vector. The linearized
from of is,
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In this equation, the Jacobian matrix (g—g) can be determined using the finite-difference method or more efficiently by
chain rule differentiation [2],
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in which, FluxInt is the flux integral, Flux are the numerical fluxes, RecSol are the reconstructed solutions at Gauss
points, RecCoef are the reconstruction coefficients, PVars are the control volume averages of the primitive variables
used in the reconstruction, and CVars are the control volume averages of the conserved variables [22].

B. Solution Stability

The second method of Lyapunov [23] is utilized to determine the stability of a system without explicit integration.
According to this method, the rate of change in the Lyapunov function can predict the stability of the solution.
Unfortunately, a general and reliable procedure to find Lyapunov functions is not available. For physical systems,
however, the total energy stored in the system is often suggested as a Lyapunov function [?4]. A concept similar to the
kinetic energy of dynamic systems is employed as the Lyapunov function in the present study. The following energy
relation is defined on the averaged solution vector U,
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For homogeneous systems of degree one (e.g. Advection, Euler, and Navier-Stokes equations) the rate of change in
energy is,
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Decreasing system energy represents a strictly stable solution.

The Lyapunov theorem of stability implies that the linear time-invariant system X = Ax is locally stable if all the
eigenvalues of A have negative (or zero) real parts. As a result, the system is unstable if any eigenvalue of A has a
positive real part. This theorem can also be used for linear time-varying systems of the form x = A(f)x. Note that
the theorems of Lyapunov offer a procedure to determine stability but not a recipe for finding the energy function
(Lyapunov function) [?5].

C. Stabilization Scheme
This section provides an overview of the presented stabilization approach by Zandsalimy and Ollivier-Gooch [I2].
This approach identifies the vertices whose locations have the largest effect on the unstable eigenmodes in the solution.
Changing the location of such vertices along carefully chosen vectors helps improve the stability of the numerical
solution or increases the convergence rate. The reader is referred to [T2] for the details of the approach. The overall
steps required to stabilize a given unstable solution are presented in the following.
Eigenanalysis We must identify eigenvalues in the right open-half of the eigenspectrum for the large, sparse
Jacobian matrices arising in CFD problems. This module is the most computationally demanding aspect of the
algorithm. Spectral transformation techniques such as the Cayley algorithm are used to isolate the problematic
eigenvalues of the Jacobian matrix. The Krylov-Schur technique [26] as implemented in the Scalable Library for
Eigenvalue Problem Computations (SLEPc) [7] is utilized to solve the eigenproblem.



Vertex Selection After identifying the unstable solution modes, the next step is to find vertices whose location
affects the unstable solution modes the most. A possible solution is to find the gradients of the eigenvalues with
respect to the movement of all vertices in different directions and choose the vertices with the largest gradients [3].
This approach, however, is computationally demanding and ideally, we prefer a much less numerically intensive
method. It is shown in [T7] that the gradient of each eigenmode is highly local to a certain part of the mesh. As
a result, only moving a single vertex in the mesh helps to push the unstable eigenvalue with a positive real part to
the left open-half of the eigenspectrum. Our approach involves using the right eigenvector associated with each
unstable mode. The absolute value of the eigenvector in each cell is added as a selection criterion for each adjacent
vertex. Finally, the vertex with the largest selection value is chosen for modification. This new vector points to the
vertex with the largest eigenvalue gradient for a given unstable mode. Note that searching the full domain of the
solution is not necessary due to the locality of each unstable eigenvector in the solution.

Eigenvalue Gradient The gradients of the unstable eigenvalues with respect to the movement of the selected
vertices reveal important information about the correct vertex movement direction and magnitude. The goal is to
move the selected vertex in a direction that would result in the unstable eigenvalue being pushed to the left open-half
side of the eigenspectrum. Further, the imaginary part of the eigenvalues causes oscillations in the solution which
can negatively affect the amplification factor as well as the convergence rate of the simulation. The presented
stabilization approach can be readily utilized to mitigate such cases too. The gradients of eigenvalues with respect
to mesh coordinates can be computed directly using the finite-difference method. However, this method will require
multiple solutions to the eigenproblem which is not ideal. We prefer reducing the need for eigenanalysis as it is
the most computationally intensive aspect of the presented approach. Hence, the gradient of an eigenvalue 4 with
respect to vertex location ¢ is estimated using the following equation [PX],
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In this equation, y is the Hermitian transpose of the left eigenvector and x is the right eigenvector associated with
the unstable eigenvalue A. In this approach, we only need to solve the eigenvalue problem once. The term % can
be found using the following approximation. ‘
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At steady-state conditions, we can assume that the changes in solution with respect to changes in the mesh are
negligible. As a result, we can use the presented approximation.

Mesh Modification In the final step, we can utilize the eigenvalue gradient to modify the location of the selected
vertex to stabilize the unstable eigenvalue. A truncated Taylor series is used for mesh modification and changing
the unstable eigenvalue A into a new stable value of A’ as follows,
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The goal here is to move the undesirable eigenmodes to the left side of the complex plane. Our experiments show

that the eigenvalue with the largest real part dictates the behavior of the residual in the solution. As a result, we aim

to move the right-most eigenvalues to the left side of the eigenspectrum so that they are not the dominant values

anymore.

The most computationally demanding aspect of the presented algorithm is the solution to the large and sparse
eigensystem. For a large sparse matrix A € R, computing m eigenvalues requires the following considerations [277],

1) Storage of m subspace vectors of length n.

2) Orthogonalization of the basis vectors, with a computational cost of O (m?n).

3) Storage of at least one dense projected eigenproblem of size m X m.

4) The solution to the projected eigenproblem with a computational cost of O (m?).
In our approach, the solution to a handful of eigenvalues on the right side of the eigenspectrum is usually sufficient which
are often well-separated from others. This makes finding the eigenvalues of interest less computationally demanding.
The present study seeks to prototype new methods to reduce the need for eigenanalysis or remove it completely from
the algorithm.



II1. Alternative Vertex Selection

Currently, the Vertex Selection and Eigenvalue Gradient modules depend on the solution to the eigenproblem. The
right eigenvectors are solution modes that can be used to identify the problematic areas in the mesh. The eigenvectors
associated with the unstable modes point to the cells that contribute the most to instabilities. Alternatively, the residual
vector can provide useful information on the unstable modes of the solution. Monitoring the residual vector for
anomalies can indicate the problematic areas of the mesh. If the largest unstable mode is a purely real number, the
residual value in the problematic cells is expected to grow without phase change. This makes the identification of
such modes through the residual vector more feasible. However, if the dominant unstable mode is a pair of conjugate
gradient values, the residual will undergo a constant phase change which can hinder our ability to identify instabilities.
In general, the residual magnitude growth is related to the real part of the dominant eigenmodes while the oscillatory
behavior is due to the imaginary part. Utilizing the residual vector helps tremendously in reducing the computational
cost of the optimization algorithm. Unlike the right eigenvectors associated with the unstable modes of the solution
which usually are highly local to certain areas in the mesh, the residual vector can have non-negligible values in the
areas that are not contributing to instabilities. As a result, a novel approach to building synthetic vectors that point to
certain areas in the mesh out of the residual vector is introduced in the present study. In this approach, the maximum
value of the residual vector is selected and the corresponding cell is identified. The synthetic vector is constructed with
the residual value in the cells that are present in the Jacobian fill of the previously selected control volume with zero
in other locations. This increases the chances of identifying a vector that looks like an unstable mode of the solution.

After identifying the appropriate vector x, we can use an approach similar to the work of Zandsalimy and Ollivier-
Gooch [I2] for vertex selection. In this approach, the absolute values of the vector are plotted on the mesh as shown
in Figure Td. The next step is to use the summation of the vector value in each cell on its vertices as a measure of
weight. The selection made through this method usually corresponds to vertices whose locations affect the unstable
modes the most. shows the distribution of the weight measure and the vertex that is selected as a candidate
for mesh optimization indicated with a white circle. This figure corresponds to the vertex selection procedure in an
unstable Euler problem using a synthetic vector built with the residual vector at a certain iteration of the solution. The
dominant unstable modes in this problem are pure real values which makes the residual vector have a constant shape,
growing over a large number of non-linear solution iterations. The dominant unstable modes in this case dictate the
shape of the residual vector and its divergence rate. As depicted, the selected vector is highly local to a certain area in
the mesh which echos the findings of [IT] about the unstable right eigenvectors.
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Fig.1 The vertex selection procedure in an Euler problem

The next experiment is performed on a Burgers problem in a rectangular channel. The absolute values of the
synthetic vector built using the residual vector are depicted in Figure 2d. As seen, the selected vector is highly local



to a certain area in the mesh which indicates the problematic cells. shows the selection weight measure on
the vertices at the same iteration of the problem. In this case, a single vertex is selected for modification through the
presented methodology which is indicated with a white circle.
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Fig. 2 The vertex selection procedure in a Burgers problem

A. The Residual Vector

If employed correctly, using the residual vector as an alternative measure to identify the problematic areas of
the mesh reduces the computational cost tremendously. However, the identification of unstable solution modes in
the residual vector can be a perplexing task. The residual vector often changes shape during the non-linear solution
iterations. According to our experiments, in cases where there are purely real unstable dominant solution modes, the
residual vector keeps a roughly constant shape during its growth phase for several solution iterations. This vector
usually points to the areas in the mesh in which those unstable modes are dominant and are causing the residual to
grow in magnitude. In cases where the dominant eigenvalues are a pair of conjugate modes, the magnitude growth is
complemented by a constant phase change which makes the identification of the problematic areas in the mesh more
difficult. Nevertheless, in the former case, anomaly detection models can be utilized to find the cells in which the
residual vector exhibits outlier values. shows the L, norm of the residual vector as well as the individual
residual values in all the cells in the Euler problem around the NACA 0015 airfoil presented in Figure 1. As seen in
Figure 34, after iteration 350 of the solution, some outlier values can be identified which are growing in magnitude.
This non-linear iteration also corresponds to the growth in the L, norm of the residual vector as seen in [Figure 35.
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Fig.3 The residual history in an Euler problem

shows the L, norm of the residual vector as well as the individual residual values in all the cells in the
Burgers problem on a rectangular channel presented in Figure 2. As seen in [Figure 44, after iteration 10 of the solution,
some outlier values can be identified which are growing in magnitude. This non-linear iteration also corresponds to
the growth in the L, norm of the residual vector as seen in Figure 48.
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Fig.4 The residual history in a Burgers problem

The residual vector at the correct non-linear iteration of the solver can have a similar shape to the unstable modes
of the solution. However, unlike the right eigenvectors that only point to a single mode of the solution, the residual
vector may be a linear combination of different modes. As we know, the unstable solution modes cause the residual
to grow in magnitude in the problematic areas of the mesh. As a result, we can extract a synthetic vector from the
residual vector which points to the problematic areas in the mesh by detecting the outlier values. In this approach, we
analyze the residual vector at every iteration of the solver and look out for outlier values that are growing in magnitude.
After selecting a certain iteration in the solution, the control volume corresponding to the maximum residual entry is
identified. The next step is to build a synthetic vector that includes the residual values of the selected cell and all the
control volumes in its Jacobian fill. This approach isolates the selected vector to only the cells that are present in the
Jacobian fill of the cell with the largest residual entry. The unstable mode is growing at a faster rate than all other
modes in the solution (usually the magnitude difference is of multiple orders). This means that isolating the search to
a certain area of the mesh where the residual vector is maximum in magnitude is a plausible approach to estimating
an unstable eigenmode. Furthermore, this process is reversible and in the case where the selected vector does not help
with the optimization process, we can go back to select a different vector to do the job. Note that the computational cost



of analyzing the residual vector for anomalies is negligible compared to a single non-linear solution iteration which
makes it feasible to perform at every iteration. Figures [[d and 4 show synthetic vectors generated using the residual
vector in the Euler and Burgers problems, respectively.

B. Anomaly Detection

Anomaly detection has been an important aspect of research in various fields of science and associated applications.
Some anomaly detection methods are developed for specific fields while others have more general applications. The
main idea is to look for and detect patterns in the data that do not conform to the overall behavior of the problem. Usually,
anomalies in the data translate to critical information in a wide variety of applications. In the scope of the present
study, anomalies in the residual vector can indicate the unstable solution modes which provide crucial information
for solution stability and convergence rate. An anomaly detection problem is a challenging task that requires careful
consideration of different factors such as defining the normal behavior that encompasses the overall patterns in the data
and defining the deviation necessary to categorize a data point as an outlier. These factors are often domain-specific
and can vary greatly for different applications. Detailed surveys on anomaly detection methods and applications can
be found in the literature [29-37].

The nature of anomaly detection methods can be categorized into three groups; point anomalies, contextual
anomalies, and collective anomalies [BZ]. In the case of residual values in each cell, specific control volumes might
have anomalous values in that specific non-linear iteration while having normal behavior at other iterations. Such
patterns can be studied in the form of contextual anomalies in which time or solution iteration is a contextual attribute
that determines the position of an instance on the entire sequence. In this case, the anomalous behavior is identified
utilizing the values for the behavioral attributes within a specific context. Here, a data point might be considered
anomalous in a given context but the same instance can be considered normal behavior in a different context. The
anomalies in the present work are studied both from the temporal as well as spatial points of view. shows
the spatial distribution of the residual values inside each cell at the non-linear iteration 350 in the Euler problem
presented in [Figure 34. As seen here, there are some outlier values with different spatial behavior than the rest of the
cells. shows the time-series behavior of the cell with the largest residual value at iteration 350 (Figure 34)
compared to a cell with non-anomalous behavior. As indicated, the residual value in the non-anomalous cell continues
to decrease even after the problematic cell exhibits unstable residual growth. Another aspect of anomaly detection
herein is the fact that dominant unstable modes in the solution will have a constant shape during solution iteration and
only grow in magnitude. As aresult, we are looking for patterns that have a constant normalized shape, contain outliers
at each iteration, and grow in magnitude with solution iteration. This novel residual analysis model can be added to the
stabilization scheme to remove the need for eigenanalysis which is the most time-consuming module in the previous
studies [172, 3].
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Fig. 5 The spatial and temporal residual behavior in an Euler problem

The anomalous behavior in different problems is often dynamic which means that new types of anomalies might
arise and the points that were anomalous before are not considered outliers anymore compared to the new values. This
makes labeling the anomalies beforehand a strenuous and infeasible task. Methods trained in supervised anomaly
detection assume the availability of labeled training data while unsupervised methods work with unlabeled data. In
the latter case, it is assumed that normal behavior is more prevalent than anomalous patterns. For practical reasons,
unsupervised anomaly detection models are utilized in the scope of the present study. The goal is to get labeled outputs
from the outlier detection module that categorize the residual value in each cell as normal or an anomaly at each
non-linear iteration of the solver (spatial analysis). Individual cells are also scanned for anomalous behavior in time
(temporal analysis). We know that the unstable solution modes are highly local to certain areas in the mesh [T7]. As
a result, certain cells in the solution exhibit anomalous residual growth which indicates the problematic areas in the
mesh. Scanning each cell in time to detect the growing trend can help with the identification of the correct unstable
modes.

Different anomaly detection methods can be used for outlier classification in the present study; Nearest Neighbor-
Based, Clustering-Based, and Statistical anomaly detection techniques are a few examples. Nearest Neighbor-based
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techniques are the anomaly detection methodology adopted herein. This family of models is data-driven and unsu-
pervised which does not make any assumptions about the normal distribution of the data. This is important in our
application as the spatial distribution of the residual values can change dramatically from one iteration to another. There
is also the possibility of labeling certain cells as normal or anomalous and utilizing the method in a semi-supervised
manner. Further, such methods require tweaking a small number of hyper-parameters for a successful outcome which
makes them much easier to work with. This approach, however, can miss the unstable oscillatory solution behavior
which is caused by the dominant unstable modes with large imaginary parts. In such cases, the residual value in the
problematic cells will undergo constant phase change [33] which makes the job much more difficult for the outlier
detector. Furthermore, the computational complexity of basic nearest neighbor methods is O(N?) [B2] which is not
ideal. However, it is still an improvement compared to the basic computational complexity of the eigensolver which is
of O(N?) [12)].

The next family of methods that are utilized for anomaly detection in the present work is clustering-based techniques.
In this approach, the normal data is considered to be a cluster that does not include anomalies. DBSCAN [B4] is a
well-known method in this family of outlier detectors in which not all points are forced to be members of clusters
which saves computational resources. Fixed width clustering can be optimized to have a computational complexity of
O (N log(N)) [BS] which is a significant improvement over the previous methods. Scikit-learn [B6] is an open-source
Python library integrating a wide range of such machine learning algorithms. This library is used as the main tool for
anomaly detection in the present study which provides an easy-to-use interface without sacrificing much computational
performance.

IV. Alternative Gradients
After finding the cells with anomalous residual behavior, the next step is to construct synthetic vectors that resemble
the unstable solution modes. Herein, the control volume with the largest residual value is selected and a synthetic vector
is constructed with the values inside the cells that are present in the Jacobian row of that particular control volume.
Later, this vector is used to find the eigenvalue gradients with respect to mesh vertex movement using [Equation 9. Note
that, both left and right eigenvectors are assumed to be the same as the newly constructed synthetic vector s. As a
result, the eigenvalue gradient can be found as follows,
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The synthetic vector s in this equation is purely real which results in s = 7.

This approach can be repeated throughout the simulation process to mitigate any unstable mode that is detected by
looking at the residual vector. In some cases, especially when the residual in the cells in question exhibit oscillatory
behavior, the resulting vertex movement vector might increase the magnitude of the residual. In this case, the process
can be reverted and the optimization can be performed in a different non-linear solution iteration. The computational
cost of each optimization iteration is negligible compared to the cost of a single solution iteration which makes this
process feasible.

Mable T presents the eigenvalue gradients of the dominant unstable eigenmode using the eigenvectors for the Euler
and Burgers problems (Figures [l and &). This table also presents the gradient of the synthetic vector (constructed using
the residual vector) for the two problems at iterations 350 and 11, respectively. The cosine of the angle between the
two gradient vectors (found using the eigenvectors and the synthetic vector) is 0.9515 for the Euler problem and 0.9997
for the Burgers problem. As depicted, the gradients calculated using the synthetic vector point in a similar direction as
the gradients calculated using the eigenvectors. This proves the accuracy of the presented approach in finding correct
movement directions for the selected vertex in the mesh.

Table 1 The eigenvalue gradient with respect to the movement of the suggested vertex

Physics Vector Eigenvalue = Gradient w.r.t. x  Gradient w.r.t. y
Euler Eigenvector 0.9389 + 0/ 183.04 + 01 746.38 + 01
Synthetic Vector NA 85.06 + 07 137.75 + 01
Burgers Eigenvector 11.9979 + 01 2460.11 + 01 657.23 + 01
Synthetic Vector NA 518.99 + 01 125.74 + 01
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can be expanded in real and imaginary parts along direction {; in space as follows,
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The gradient has a contribution of M, = ‘R(g—é) in changing the real value of the unstable eigenmode. Note that our
goal is to push the unstable eigenmode to the left side of the eigenspectrum along the real axis. As a result, to change

the eigenvalue A to A’ according to we can use a scaled movement magnitude along ¢; as follows,
A =2 Mg,
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As seen, in this approach, the vertex movement components along different directions in space are equal and only differ
by sign. In practice, this means that the components of the gradient from the synthetic vector only need to be accurate
enough to have the same sign as the gradient from the eigenvector. This is while in our case the gradient from the
synthetic vector is very close to the approach adopted by Zandsalimy and Ollivier-Gooch [IZ].

shows a contour plot of the real part of the dominant eigenvalue with changes in vertex location in the
Burgers problem presented in Figure J. Here, the location of the vertex indicated with a white circle is changed many
times and the resulting Jacobian matrix is analyzed for the dominant eigenmodes. As depicted, for vertex locations on
the cyan side, the real part of the dominant eigenmode is negative which means the solution is stable. On the contrary,
if the vertex lies on the pink side, the dominant mode is unstable and has a positive real part. As shown here, there is a
clear boundary between the unstable and stable regions. Note that many different vertex movement vectors result in the
stabilization of the original problem. This large window for vertex movement makes the accuracy of our approximation
to the gradient of the eigenvalue less critical.
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Fig. 6 The real part of the dominant eigenvalue versus vertex location in a Burgers problem

V. Results
This section demonstrates the results obtained from the novel mesh optimization and stability improvement algo-
rithm presented herein. The feasibility of the novel methods is evaluated and the results are gauged against previous
studies. Lastly, the contributions to reducing the computational resource requirements are assessed.
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A. Mesh Optimization

1. Burgers Test A

The non-linear inviscid Burgers problem, ‘3—; + u% = 0, is selected as a first test case. This problem is solved on a

7 X 0.5 rectangular channel with the boundary conditions presented in [Figure 7d. An example of the unstructured mesh
used for the solution of this problem using finite-volume methods is presented in [Figure 7§. This mesh is considered
high-quality according to the traditional mesh quality guidelines. The solution to this problem is performed using
Crank-Nicolson time-stepping method. The original solution on a mesh with 500 control volumes is unstable with
the residual history presented in Figure 48. As seen in [Figure 44, the residual in individual cells contains anomalous
values after iteration 10. The residual value inside all the cells at iteration 11 of the solver is presented in [Figure 8. The
residual vector contains anomalous values as depicted in this figure. The anomaly detection module also selects the
four cells with the largest residual values as anomalous control volumes. The application of our novel vertex selection
and mesh modification approach at iteration 11 of the solver results in the full stabilization of the solution. The residual
history of this problem before and after a single optimization iteration is presented in [Figure 94. This figure also
depicts the residual history after optimization of the same problem from Zandsalimy and Ollivier-Gooch [IZ]. As seen,
the convergence history after optimization in the present study closely follows that work. The original and optimized
meshes are presented in which shows the location of a single vertex is modified for a stable problem.
depicts the eigenspectrum of the semi-discrete Jacobian matrix before and after mesh optimization. As seen here, there
is a single pure real unstable mode in the original problem. A single iteration of the novel optimization procedure
results in pushing the unstable eigenvalue to the stable region.

A
y
0.5
ou
~Z =0
dy
o o
Il Il
= u(x,y) =
S £
= =
u(x,0) = —sin(x)
0.0
T T >
X
0.0 T
(a) The physical domain and boundary conditions
0.50
> 0.25
0.000 =t

x N3

(b) An example of the unstructured mesh

Fig.7 The domain, boundary conditions, and unstructured mesh for the solution to the Burgers problem [I2]
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Fig. 9 Mesh optimization in a Burgers problem on an unstructured mesh with 500 cells

2. Burgers Test B

The next solution to the Burgers problem is performed using Crank-Nicolson time-stepping method on a mesh with
1100 control volumes. This simulation is unstable with the residual history presented in Figure 10a. This problem
contains five unstable modes, one of which is a pair of conjugate values. The anomaly detection module shows some
outlier values at the non-linear iteration 8 of the solution. We use the presented approach to construct a synthetic vector
out of the residual vector at this iteration and perform the optimization, resulting in the residual history presented
in green in Figure 104. The location of a single vertex is modified in this step which is presented in Figure T0H.
depicts the eigenspectrum of the original problem as well as after the application of the optimization
program. The first iteration of the optimization pushes the dominant unstable mode to the left side of the spectrum as
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depicted in the eigenspectrum of [Figure T0d. However, there are still unstable modes that require remediation. Next,
the outlier detection module shows anomalous values in the residual history at iteration 20 of the solver. Performing
another iteration of the optimization at this point results in stabilizing another unstable mode as depicted in [Figure 10d.
However, the simulation is still unstable as there are more unstable modes in the solution. The next iteration of the
optimization algorithm is performed at iteration 60 of the solution. This step stabilizes the solution by pushing the
remaining 3 unstable eigenvalues to the left side of the spectrum as seen in Figure T0d. As demonstrated in [Figure 108,
at each step of the optimization a single vertex is moved to stabilize the corresponding unstable modes.
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Fig. 10 Mesh optimization in a Burgers problem on an unstructured mesh with 1100 cells
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3. Burgers Test C

Another solution to the Burgers problem is performed using Crank-Nicolson time-stepping method on a mesh with
1400 control volumes. This simulation is unstable with the residual history presented in Figure 1Ta. This problem
contains two unstable modes the dominant of which is a pair of conjugate values. The anomaly detection module
shows some outlier values at the non-linear iteration 32 of the solution. Performing the optimization at this non-linear
iteration results in the residual history presented in blue in Figure T14. The modified mesh at this point is presented
in Figure 110 indicated with blue. depicts the eigenspectrum of the original problem as well as after the
application of the optimization program. The first iteration of the optimization pushes the dominant conjugate pair of
unstable modes to the left side of the spectrum as depicted in the eigenspectrum of Figure T1d. However, the single
purely real unstable mode still remains in the solution. In the next step, the outlier detection module shows anomalous
values in the residual history at iteration 40 of the solver. Performing another iteration of the optimization at this point
results in the full stabilization of the problem as depicted in Figure T1d. [Figure 115 shows the next vertex location
modification in red.
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Fig. 11 Mesh optimization in a Burgers problem on an unstructured mesh with 1400 cells

4. Euler Test A

The Euler problem is selected as the next test case in the present study which is solved around the NACA 0015
airfoil inside a circular domain with a radius of 500 chords. In the initial solution for this problem throughout the
paper, density is set to 1.0, velocity in (x, y) direction to M (cos(a), sin(@)), and pressure to Pjsey. In these relations,
M, is the free-stream Mach number, « is the angle of attack, and Pjg, is the resulting pressure during isentropic
expansion to M. The first mesh to be tested contains 600 control volumes. The simulation using Crank-Nicolson
time-stepping method with M., = 0.5 and @ = 0 is unstable with the residual history presented in [Figure 12d. This
problem contains two purely real unstable modes. According to the anomaly detection module, outlier values show up
in the residual vector at the non-linear iteration 300 of the solver. Performing the optimization at iteration 350 results in
the residual history presented in red in Figure 124. The modified mesh is presented in [Figure 128. [Figure 12d depicts
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the eigenspectrum of the original problem at iteration 350 as well as after the application of the optimization program.
The first iteration of the optimization pushes the unstable modes to the left side of the spectrum as depicted.
compares the result of mesh optimization from the present study with Zandsalimy and Ollivier-Gooch [I7]. As seen,
the optimization performed herein stabilizes the dominant unstable mode and the residual history closely follows the
result of [12].
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Fig. 12 Mesh optimization in an Euler problem using Crank-Nicolson time integration on an unstructured
mesh with 600 cells

5. Euler Test B
This problem is solved on the same mesh using the Implicit Euler time-stepping method. CFL evolution strategies
[37] are utilized to increase the convergence rate of the problem. The original solution is unstable with the residual
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history presented in Figure 134. This problem contains three unstable modes one of which is a pair of conjugate
eigenvalues. The non-linear iteration 10 of the solver is selected to extract the synthetic vector. Performing the
optimization at this point results in the residual history presented in red in [Figure 134. The modified mesh is presented
in Figure T3B. As seen, only a single vertex is modified to reach a fully stabilized solution compared to the two vertices
in the previous study. depicts the eigenspectrum of the original problem at iteration 9 as well as after the
application of the optimization program. The first iteration of the optimization pushes all the unstable modes to the left
side of the spectrum and stabilizes the problem. compares the result of mesh optimization from the present
study with Zandsalimy and Ollivier-Gooch [I7]. As seen here, the convergence rate after optimization is similar to the
previous study.
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Fig. 13 Mesh optimization in an Euler problem using Implicit Euler time integration on an unstructured mesh
with 600 cells
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6. Euler Test C

Another Euler problem is solved using the Implicit Euler time-stepping method on a mesh with 7600 cells. The
original solution is unstable with the residual history presented in Figure 144. The non-linear iteration 20 of the
solver is selected to extract the synthetic vector. Performing the optimization at this point results in the residual history

presented in red in Figure T4d. The modified mesh is presented in [Figure T4H. As seen, only a single vertex is perturbed
to reach a fully stabilized solution.
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Fig. 14 Mesh optimization in an Euler problem using Implicit Euler time integration on an unstructured mesh
with 7600 cells

7. Euler Test D

The same Euler problem is solved using the Implicit Euler time-stepping method on a mesh with 16000 cells.
The original solution is unstable with the residual history presented in Figure 154. The non-linear iteration 20 of the
solver is selected to extract the synthetic vector. Performing the optimization at this point results in the residual history

presented in red in [Figure 154. The modified mesh is presented in [Figure T5H. As seen, only a single vertex is perturbed
to reach a fully stabilized solution.
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Fig. 15 Mesh optimization in an Euler problem using Implicit Euler time integration on an unstructured mesh
with 16000 cells

B. Computational Cost

demonstrates the run-time of different modules in the present work for the solution to an Euler problem in
comparison to previous studies. The eigenanalysis module was the most computationally intensive aspect of the work
by Zandsalimy and Ollivier-Gooch [I2]. This module is eliminated in the present study and replaced with residual
vector analysis. The computational time of the flow solver and gradient calculation is the same as before. However,
there is a considerable solution-time reduction in the overall computations which is due to the complete elimination
of the eigenanalysis module. It is important to note that, unlike the eigenanalysis module, the residual analysis is
not the bottleneck of the optimization approach anymore. This is while the residual analysis module is performed in
Python programming language which can be much slower than C++. This novel approach to unstable solution mode
identification and movement vector calculation enables us to tackle larger problems and improve stability in real-world
applications.
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VI. Conclusion

A novel approach to identifying unstable modes in a finite-volume simulation using the residual vector was presented
in the current study. In this approach, a synthetic vector is constructed based on the anomalous behavior of the residual
vector. The anomalies in a given residual are evaluated based on their spatial and temporal behavior. The unstable
modes of the solution can be identified through outlier values in the residual that point in a constant direction during
solution iteration and grow in magnitude. The synthetic vector, if constructed using the residual at a suitable non-linear
solution iteration, is shown to be similar to the dominant solutions modes. This helps tremendously in selecting the
correct vertices for modification as well as movement vector calculation. We were able to apply the presented stability
improvement method to different medium-scale problems without performing the eigenanalysis of the Jacobian matrix.
This novel approach to solution mode identification improved the efficiency of our previous method of unstructured
finite-volume mesh optimization, reducing the overall computational cost. The new approach was tested on various
non-linear simulations and the results were validated against previous studies.
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