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Abstract

Novel methods are studied to improve the performance of our previous mesh op-

timization approach for the stability improvement of unstructured-mesh finite-

volume simulations. The residual vector as well as solution modes from Princi-

pal Component Analysis of solution vectors are analyzed for this purpose. After

sufficient growth, instabilities appear as anomalies in the dominant numerical

modes. Using standard classification algorithms, such outliers can be detected

readily and much more efficiently compared to the eigenanalysis of the Jacobian

matrix, which was required by the forebears of the current study. Further, it

is essential to identify the correct local regions on the mesh for possible mod-

ification of vertex location and to remove the noise from the non-related cells.

Hence, a synthetic vector is constructed from the working vector containing

instabilities to simulate the behavior of the right eigenvectors in the solution.

The results show the feasibility of residual vector analysis and principal compo-

nent analysis of solution vectors for the stability improvement of finite-volume

simulations. The new approach results in complete automation of the mesh

optimization application.
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Improvement.

1. Introduction

Large-scale 3D flow simulation is an increasingly important area of research

in the Computational Fluid Dynamics (CFD) industry with growing require-

ments for computational power and accuracy of the results. The numerical

solution to such problems is resource intensive and peppered with inevitable5

complications. Numerical stability issues and poor numerical convergence be-

havior are frequently recurring themes.

Aufiero and Fratoni [1] presented an approach to stabilize and accelerate the

convergence of steady-state coupled Monte Carlo/thermal-hydraulics simula-

tions, by combining the Newton method and Monte Carlo perturbation theory.10

Their method was successfully demonstrated in a simplified pressurized water

reactor (PWR) multi-physics simulation showing an effective stabilization and

convergence acceleration of the coupled problem. Otero and Eliasson [2] imple-

mented an implicit Lower-Upper Symmetric Gauss-Seidel (LU-SGS) relaxation

on a flow solver for unstructured meshes based on a multi-grid formulation.15

They demonstrated a convergence acceleration of three orders for inviscid tran-

sonic flows compared to explicit Runge-Kutta smoothing for multi-grid accelera-

tion. FaSTAR [3] is among the well-known unstructured-mesh CFD codes that

use multi-grid methods and GMRES to accelerate the convergence behavior.

Lang et al. [4] proposed a strategy to develop fast Reduced Order Models based20

on PCA of commercial CFD results. Their model was robust within the well-

sampled input domain and the CPU time was significantly reduced. Citro et al.

[5] proposed a method based on the minimization of the residual norm at each

iteration with a projection basis to compute the unstable steady states and/or

accelerate the convergence to stable configurations. Their algorithm improved25

the convergence of the existing iterative schemes.

Moreover, some studies in the field utilize Machine Learning (ML) techniques

for improved accuracy and/or mesh optimization of CFD problems. Ling et al.
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[6] used Deep Neural Networks (DNN) to train a model for the Reynolds stress

anisotropy tensor from high-fidelity simulation data. They demonstrated im-30

proved prediction accuracy from the new model compared to previous ones.

Novati et al. [7] employed multi-agent reinforcement learning to estimate the

unresolved subgrid-scale physics. Their unsupervised approach exhibited fa-

vorable generalization properties across grid sizes and flow conditions with the

results presented for isotropic turbulence. Fidkowski and Chen [8] presented a35

machine-learning approach for determining the optimal anisotropy of unstruc-

tured meshes in output-based adaptive solutions. Artificial neural networks were

used to predict the desired element aspect ratio from features of the primal and

adjoint solutions.

Zandsalimy and Ollivier-Gooch [9] presented novel methods to improve the40

efficiency and effectiveness of a previous mesh optimization approach for unstructured-

mesh finite-volume simulations [10]. The vertex selection methodology was im-

proved and a new method was implemented to reduce the overall number of

optimization iterations. However, the most computationally intensive aspect

of the algorithm, the solution to the large sparse eigenproblem, remains an is-45

sue that makes it infeasible to apply to large-scale 3D simulations. In another

work, Zandsalimy and Ollivier-Gooch [11] employed fast and reliable classical

unsupervised classification and anomaly detection algorithms to identify unsta-

ble solution modes in the residual vector. They presented a novel method to

construct synthetic vectors from the residual vector that echoes the shape and50

behavior of the unstable right eigenvectors. This enabled them to find highly

accurate estimates of the unstable eigenmode and its gradients with respect to

mesh vertex movement which fully eliminated the need for the eigenanalysis

module for substantial computational savings.

The present paper provides a method based on residual/solution vector anal-55

ysis and classification models to enhance the efficiency of the previous mesh op-

timization approach. Principal Component Analysis (PCA) is typically used to

reduce the dimensionality of a dataset containing a large number of closely re-

lated variables while preserving the most important variations in the data. This
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end is fulfilled by identifying a small set of uncorrelated (orthogonal) principal60

components and the transformation of the data. We normalize each solution

vector by removing the vector average to shift the focus to more important

variations in the data. As a result, PCA can help identify the largest solu-

tion variations which usually correlate to the dominant modes in a numerical

simulation or instabilities in the case of unstable solutions. PCA and residual65

analysis are computationally more efficient than the full eigenanalysis of the Ja-

cobian matrix. To further reduce the computational complexity of the presented

methodology, we perform PCA on a small subset of solution vectors in the form

of a tall skinny matrix. The required computational resources are reduced by

lowering the number of solution vectors in use. However, enough data should70

exist for the successful identification of the dominant solution modes. Singu-

lar Value Decomposition (SVD) provides a computationally efficient method of

calculating the principal components.

Solution mode analysis through PCA provides better estimates of the un-

stable modes in comparison with the residual vector. However, PCA is more75

computationally demanding. We are seeking a balance between accuracy and

computational cost to be able to stabilize or improve the convergence rate of

finite-volume simulations as effectively, reliably, and quickly as possible. Un-

stable numerical modes are highly localized in the domain of solution [9] and

identifiable through solution mode analysis. In unstable problems, the domi-80

nant solution modes exhibit instabilities with outlier values and overshoots in

the vector. Such outlier values can be detected using anomaly detection models.

The outlier detection module may also present computational complexity and

memory requirement issues in the final mesh optimization algorithm. Hence, dif-

ferent classification models are studied to identify the one that best conforms to85

the criteria sought herein. In the next step, synthetic unstable eigenvectors are

constructed based on the approach presented by Zandsalimy and Ollivier-Gooch

[11] using the anomalous values in the solution mode. Furthermore, synthetic

eigenmodes and their gradients are calculated using the synthetic vectors for

mesh optimization.90
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2. Background

2.1. Flow Solver

The finite volume method is utilized for the discretization of the partial

differential equations with 2nd-order spatial accuracy. The general conservation

equation can be written as follows.95

∂U

∂t
+∇ · F (U) = S(U) (1)

Here, U are the conserved quantities, F (U) is the flux tensor, and S(U) is

the source term. To obtain a numerical solution to Equation (1), the solution

domain is discretized into a set of non-overlapping control volumes Ωi the union

of which builds the entire solution domain. We can write the integral form of

Equation (1) by integrating over each control volume as follows.100 ∫
Ωi

∂U

dt
dΩ+

∮
∂Ωi

F (U) · n̂d(∂Ω) =
∫
Ωi

S(U)dΩ (2)

Here, the Gauss divergence theorem has been used to convert the flux divergence

integral into a surface integral over the boundaries of the control volume. In

this equation, n̂ is the unit outward pointing normal vector from the faces of

cell Ωi. The average of any property U inside each cell can be expressed as,

Ūi =
1

|Ωi|

∫
Ωi

UdΩ (3)

Here, |Ωi| is the volume of cell Ωi. Assuming the control volumes are fixed, we105

can pull the time derivative out of the first integral in Equation (2). In the finite

volume method, a numerical solution Uh is sought on a mesh of characteristic

size h that approximates the control volume average Ūi. As a result, we can

rewrite Equation (2) as follows.

|Ωi|
dUh

dt
= −

∮
∂Ωi

Fh(U) · n̂d(∂Ω) + |Ωi| S̄i = R(Uh) (4)

In this equation, R(Uh) is the steady state residual vector.110

This methodology is locally conservative, which guarantees global conserva-

tion. The surface flux integral in Equation (4) can be calculated with second-

order accuracy through the following procedure.
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1. Reconstruct the control volume averages using the linear least-squares

method.115

2. Compute the flux at each quadrature point on the boundaries of each cell.

Upwind flux formulas such as Roe’s scheme [12] are used for convective

fluxes and central flux formulas are used for diffusive terms.

3. Find flux values using Gauss quadrature rules.

The boundary conditions are applied weakly using flux values on the boundaries.120

Equation (4) can be discretized in time using an appropriate ODE time

integrator. In a number of experiments in this work, the Crank-Nicolson time

advance scheme is utilized as presented in Equation (5).

δUh

δt
=

Uk+1
h −Uk

h

δt
=

1

2

(
R(Uk+1

h ) +R(Uk
h )
)

(5)

where δt is the time-step size. The linearization of this equation results in the

following approximation,125 (
1

δt
I − 1

2

∂R

∂Uh

)
δUh = R(Uk

h ) (6)

The Jacobian matrix, ∂R

∂U
, can be calculated using the finite difference method

or chain rule differentiation [13] as follows.

∂R

∂U
=

∂FluxInt
∂Flux

∂Flux
∂RecSol

∂RecSol
∂RecCoef

∂RecCoef
∂PVars

∂PVars
∂CVars (7)

Here, FluxInt is the flux integral, Flux are the numerical fluxes, RecSol are

the reconstructed solutions at Gauss points, RecCoef are the reconstruction

coefficients, PVars are the control volume averages of the primitive variables130

used in the reconstruction, and CVars are the control volume averages of the

conserved variables [13]. For the purpose of our work, only the matrix-vector

products of the Jacobian matrix are required which enables us to use a matrix-

free approach when necessary.

The implicit Euler time integration method is also utilized frequently in the135

current study. In this method, Equation (4) can be discretized in time using,

δUh

δt
=

Uk+1
h −Uk

h

δt
= R(Uk+1

h ) (8)
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This implicit method is employed in conjunction with local time-stepping and

CFL evolution strategies, wherein the time-step size is dynamically adjusted

based on variations in the residual [13]. The incorporation of these sophisti-

cated time integration techniques contributes to enhanced numerical stability140

by mitigating the impact of unstable modes arising from the initial conditions

of the solution. Despite the efficacy of these advanced time marching meth-

ods, challenges persist in certain simulation scenarios, where they may exhibit

suboptimal numerical stability and convergence behavior.

2.2. Standard Test Cases145

Two classical flow problems are utilized as the main test cases in the current

study which we will refer to at different points during our methodology formu-

lation and results discussions. For this purpose, we have chosen the non-linear

inviscid Burgers problem and the Euler problem on different two-dimensional

solution domains. This section provides detailed descriptions of the solution150

domain. boundary conditions, and the converged solution for each problem.

Different meshes are generated using the Generation and Refinement of Un-

structured Mixed-Element Meshes in Parallel (GRUMMP) toolkit [14] contain-

ing geometric high-quality cells for each test case.

The non-linear one-dimensional inviscid Burgers problem ∂u
∂t + u∂u

∂x = 0 is155

selected as the first test case. Here, we transform the time dimension of the

Burgers equation into a second space dimension y for better representation of

the solution. As a result, a new unsteady equation is formed to be solved as
∂u
∂t + ∂u

∂y + u∂u
∂x = 0. This problem is solved on a π × 0.5 rectangular channel

with the boundary conditions presented in Figure 1a. The Crank-Nicolson time-160

stepping method is used for the solution to this problem throughout the study.

An example of the mesh used for the solution is presented in Figure 1b. It is

worth noting that this mesh adheres to quality standards as per traditional mesh

quality guidelines. The final converged solution for this problem is presented in

Figure 1c. The color bar in this figure shows the value of u(x, y) in the domain.165
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Figure 1: The standard Burgers problem

The Euler problem is selected as the next test case solved around the NACA

0015 airfoil inside a circular domain with a radius of 500 chords. The flow vari-

ables are nondimensionalized with the free-stream conditions for a general solu-

tion in non-dimensional form. In the initial solution for this problem, free-stream

density ρ∞ is set to 1.0, velocity in (x, y) direction to M∞(cos(α), sin(α)), and170

free-stream pressure P∞ to 1
γ . In these relations, M∞ is the free-stream Mach

number, α is the angle of attack, P∞ is the far-field thermodynamic pressure,
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and γ is the heat capacity ratio of the fluid. Further, in this problem, stagnation

values are set from the isentropic relations. This numerical simulation is carried

out using both Crank-Nicolson as well as Implicit Euler time-stepping methods.175

CFL evolution strategies [13] are utilized to increase the convergence rate of

the problem in the case of Implicit Euler time-stepping. The physical domain

of this solution is presented in Figure 2a and a typical triangular mesh that is

used for this simulation is depicted in Figure 2b. In all the test cases that solve

the Euler problem, the angle of attack is set to zero and a Mach number of 0.5180

is used. The final converged solution for this problem is presented in Figure 2c

which shows the contours of density.
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Figure 2: The standard Euler problem
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2.3. Baseline Mesh Optimization Approach

The stabilization algorithm presented by Zandsalimy and Ollivier-Gooch [9]

is used as the main mesh optimization approach in the current study. This185

algorithm is based on the Lyapunov stability theory [15] for dynamical systems

without explicit integration. The Lyapunov theorem of stability implies that the

linear time-invariant system ẋ = Ax, is locally stable if all the eigenvalues of A

have non-positive real parts. As a result, the system is unstable if any eigenvalue

of A has a positive real part. In other words, for a linear time-invariant system,190

stability of the equilibrium point can be characterized by the location of the

eigenvalues of the Jacobian matrix [16] on the complex plane. The real part

of an eigenvalue depicts the magnitude growth rate and the imaginary part

shows the frequency of evolution of the state variable in the direction of the

corresponding eigenvector [17].195

The Jacobian and therefore its eigenspectrum is dependent on several fac-

tors including the physics, discretization method, mesh topology and vertex

locations. This implies that vertex movement can be employed to modify un-

stable eigenmodes as a means of stability improvement in CFD [9]. In this

approach, the first step of a successful mesh optimization for stability is to200

perform a partial eigenanalysis of the Jacobian matrix. After identifying the

unstable eigenvalues in the right open half of the spectrum, the corresponding

eigenvectors are calculated and used to select specific vertices for modification.

Using this method, the modification of a single vertex is typically sufficient to

stabilize each unstable eigenmode. Then, the gradients of the unstable modes205

with respect to the movement of the selected vertices can be calculated and used

to modify vertex location to stabilize the unstable eigenmodes using the steepest

descent method. The reader is referred to Zandsalimy and Ollivier-Gooch [9]

for the details of their mesh optimization approach.

A schematic of the optimization algorithm in conjunction with the non-210

linear solver is depicted in Figure 3. As seen in the Optimization block, the first

step is deciding to perform the stabilization in a certain iteration of the solver.

The issue of automating this step is addressed through the novel approach pre-
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Figure 3: Overview of the stabilization approach presented by Zandsalimy and Ollivier-Gooch

[9] coupled with the non-linear solver

sented in the current study. As the solution progresses, the eigenvalues of the

semi-discrete Jacobian change and new unstable modes might appear in the215

solution. To remediate these cases, Zandsalimy and Ollivier-Gooch [9] applied

their approach at one or more intermediate stages of convergence as needed.

This method is capable of stabilizing initially unstable finite volume solutions

on unstructured meshes as well as solutions that exhibit unstable behavior after

several iterations of the solver.220

2.4. Numerical Versus Physical Instabilities

Unfortunately, no general method has yet been devised to distinguish be-

tween numerical and physical instabilities. This is important for our work, be-

cause our experience shows that numerical instabilities can be easily corrected
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by mesh movement, whereas physical instabilities are unaffected by mesh move-225

ment. We propose here a qualitative approach to distinguishing between these

based on the sensitivity of eigenvalues to mesh movement and the localization

of the eigenvectors. In the case of numerically unstable modes, the gradients of

the eigenvalues with vertex movement are usually several orders of magnitude

larger than for physically unstable modes. Further, according to our experi-230

ments, the numerical modes are expected to have relatively compact support,

unlike the physical modes which are more spread out. Vortex shedding and

shock waves are examples of unstable physical modes while solution instabilities

caused by local mesh defects are considered unstable numerical modes. These

examples also satisfy the conditions discussed herein to distinguish physical and235

numerical modes in a simulation.

The eigenvalue gradient magnitude versus the number of non-zero values

in the corresponding eigenvector for each solution mode can be depicted on

a scatter plot as in Figure 4. Here, a large eigenvalue gradient and a lower

number of non-zero eigenvector entries (bottom right) corresponds with a higher240

probability of a numerical solution mode while a small eigenvalue gradient and a

larger number of non-zero entries in the eigenvector (top left) suggests a higher

probability of a physical mode.
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Figure 4: Non-zero values in the eigenvector versus eigenmode gradient magnitude

Figure 5 shows the scatter plot of the gradients of all the eigenmodes in

a Burgers problem with respect to mesh vertex movement. Each dot in this245

figure indicates the eigenvalue gradient versus the number of non-zero values

in the corresponding eigenvector for a given eigenmode. As seen here, the top

left corner of the plot shows the eigenmodes with small gradients and large

number of non-zero values in the eigenvector which are likely to be physical

modes. On the other hand, the bottom right corner shows the numerical modes250

with large gradients and small number of non-zero values in the eigenvector.

Figure 6 indicates the density of the distribution of entries with the color bar

depicting the number of entries located in a given region of eigenvalue gradient

versus eigenvector non-zero values. Note the logarithmic scale on both the

horizontal and vertical axes. As seen in both plots for gradients with respect255

to x and y, most entries are located in the dark area which corresponds to a

gradient of O(103) and the number of non-zero values of O(102). Further, we

can see a few values with larger gradients of around 105 and a similar number

of eigenvector non-zero values of around 102. In practice, these values can be

considered numerical modes of the simulation. Figures 7 and 8 depict the same260

phenomena for an Euler problem. As seen in Figure 8, there is a much better
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separation between numerical and physical modes with two concentrated regions

of high eigenvalue gradient of O(103) versus small number of eigenvector non-

zeros of O(102) and small eigenvalue gradient of O(100) versus large number

of eigenvector non-zeros of O(103). As a result, the concentrated region close265

to the bottom right corner of the spectrum can be considered numerical modes

while the region located near the top left can be considered physical modes.
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Figure 5: Scatter plot of the eigenvalue gradients versus the number of non-zero values in the

eigenvector in a Burgers problem with 4500 cells
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Figure 6: Density contours of the distribution of the eigenvalue gradients versus the number

of non-zero values in the eigenvector in a Burgers problem with 4500 cells
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Figure 7: Scatter plot of the eigenvalue gradients versus the number of non-zero values in the

eigenvector in an Euler problem with 600 cells

10 3 10 1 101 103

Eigenvalue gradient magnitude

102

103

N
on

-z
er

o 
va

lu
es

 in
 th

e 
ei

ge
nv

ec
to

r

1e-02

1e-02

2e-02

3e-02

4e-02

6e-02

9e-02

1e-01

2e-01

3e-01

(a) Gradient with respect to the x

10 3 10 1 101 103

Eigenvalue gradient magnitude

102

103

N
on

-z
er

o 
va

lu
es

 in
 th

e 
ei

ge
nv

ec
to

r

1e-02

1e-02

2e-02

3e-02

4e-02

7e-02

1e-01

1e-01

2e-01

3e-01

(b) Gradient with respect to the y

Figure 8: Density contours of the distribution of the eigenvalue gradients versus the number

of non-zero values in the eigenvector in an Euler problem with 600 cells

3. Methodology

The most resource-intensive aspect of the presented methodology (Figure 3)

is the solution to the large sparse eigenproblem. Removing this module can270

dramatically reduce the computational cost of the approach. The current work

studies the feasibility of residual vector analysis and principal component anal-

ysis as alternative tools for eigenanalysis in stability improvement and mesh
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optimization applications. We also present tools to construct synthetic vectors

that simulate the behavior of the least stable eigenvectors for vertex selection275

and eigenvalue gradient calculation. The presented methodology utilizes an

anomaly detection module for automatic solution mode selection. The anomaly

detection module requires fewer computational resources in comparison to other

aspects of the algorithm.

3.1. Principal Components280

Principal Component Analysis (PCA) of a sequence of solution vectors de-

termines the dominant modes in the numerical simulation. As we will show, in

cases where real unstable numerical modes are present, the dominant modes will

manifest outlier values with anomalous behavior. In such cases, outlier detectors

can help find unstable modes while the simulation is underway. Linear stability285

theory proposes that, during blowup, the solution will increasingly resemble the

most unstable eigenvector. As a consequence, the dominant mode should re-

semble this eigenvector and can be used to construct a synthetic vector that is

pointing in a similar direction as the eigenvector to be used in the stabilization

algorithm. The resulting artificial vectors can help locate the problematic areas290

of the mesh, estimate the unstable eigenvalues, and compute the gradient of the

synthetic eigenmodes with little computational cost.

The goal of PCA is to extract the most important information from the data

as a set of new orthogonal variables referred to as principal components. The

principal components can be extracted using the Singular Value Decomposition295

of a matrix A ∈ Cm×n into the product of form UΣV H in which m > n,

U ∈ Cm×m and V ∈ Cn×n are two unitary matrices, and Σ ∈ Rm×n is a

diagonal matrix containing the singular values. There exist efficient algorithms

to perform singular value decomposition such as the work of Golub and Reinsch

[18]. The Scalable Library for Eigenvalue Problem Computations (SLEPc) [19]300

provides systematic tools to perform SVD readily and effectively which is utilized

in the present study.

We aim to perform SVD on a small selection of solution vectors. For a tall
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skinny A (m ≫ n) the computational complexity of SVD is of O(mn2) [20]. This

is a great improvement over the eigenanalysis of the full Jacobian matrix which305

can have a complexity of up to O(m3) for a square matrix B ∈ Cm×m. The

caveat, however, is the requirement of performing SVD multiple times during

a finite-volume simulation compared to the full eigenanalysis which has a high

chance of succeeding in only one iteration of the approach. As a result, this

trade-off needs to be studied accurately to assess the feasibility of the proposed310

method.

As mentioned earlier, in simulations that contain unstable numerical modes,

the largest principal components exhibit instabilities manifested as anomalies in

a few cells. As an example, the Burgers problem is solved on a mesh with 500

cells using the Crank-Nicolson time-stepping scheme. This solution is unstable315

as seen in the residual history plot presented in Figure 9a. Figure 9b shows the

eigenspectrum of the Jacobian matrix in the first iteration of the simulation.

As depicted, the Jacobian matrix includes a single unstable mode on the right

open half of the eigenspectrum. At each iteration of the solution, SVD is per-

formed on the 10 most recent solution vectors, which are normalized and the320

mean is subtracted from each vector to focus on the more important variations.

The snapshots of the largest solution mode at each iteration are presented in

Figure 10. As seen, the dominant solution mode exhibits anomalous behavior

in a few cells near the left boundary at around iteration 10 and after. As this

is a nonlinear problem, the outlier quickly contaminates neighboring cells and325

causes the solution to diverge. This anomalous behavior is highly likely to be

generated by the sole unstable numerical mode in this solution.
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Figure 9: The solution to a Burgers problem using the Crank-Nicolson time-stepping method
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Figure 10: Largest solution mode contours in a Burgers problem20



As depicted, the largest solution mode in an unstable problem exhibits

anomalous behavior in the problematic control volumes. These outlier values

emerge when the least stable mode of the solution becomes the dominant one.330

As seen in Figure 9a, the residual is decreasing during iterations 1 to 11 of the

simulation. This means that up to iteration 11, the dominant solution mode

is a stable one while after iteration 11 the unstable mode becomes dominant

and results in a sudden growth in the residual history. These anomalies are

readily recognizable to the naked eye. According to the experiments performed335

by Zandsalimy and Ollivier-Gooch [11], anomaly detection can be used as a

powerful tool in detecting such outlier values to find the correct iteration of the

solution to apply the optimization as well as identifying the problematic cells

for modification.

A similar test is performed on an Euler problem with 600 cells and the340

implicit Euler time-stepping method with the results presented in Figures 11

and 12. As seen in the residual history of Figure 11a the problem is divergent.

Figure 11b shows the eigenspectrum of the simulation with two real unstable

eigenmodes. SVD is performed on the 10 most recent solution vectors (pressure

only) and the contours of the largest solution mode are presented in Figure 12.345

As seen here, an outlier value is visible after iteration 5 adjacent to the top

surface of the airfoil.
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Figure 11: The solution to an Euler problem using the implicit Euler time-stepping method
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Figure 12: Largest solution mode contours in an Euler problem
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3.2. Residual Vector

Similar to the principal components of the solution, the residual vector also

carries important information regarding the dominant modes of the simulation.350

However, the identification of unstable solution modes using the residual can

be a perplexing task as this vector often changes shape during the numerical

solution. In cases where the dominant mode is a pure real value, the residual

keeps a roughly constant shape during its growth for several solution iterations.

This vector, similar to the unstable right eigenvector, points to the areas in355

the mesh which have the largest effect on the solution mode in question. In

cases where the dominant mode has a non-zero imaginary part, the magnitude

growth is accompanied by a constant phase change per iteration which makes

the identification of the problematic areas in the mesh more challenging. Nev-

ertheless, in the former case, anomaly detection models can help identify the360

cells with anomalous residual behavior. Figure 13 depicts the residual vector

snapshots on the mesh for the same Burgers problem presented in Figure 9. As

seen, a few outliers can be identified in the vector which move around the do-

main as the solution progresses in time. At iteration 11 of the non-linear solver,

the outlier values point to a small selection of cells near the left boundary of365

the solution. This is consistent with the results obtained from the SVD test in

Figure 10. These anomalous values point to the same cells until iteration 15.

The only unstable mode in this experiment is local to the same selection of cells.

Figure 14 shows the residual vector contours at every iteration of the non-linear

solver for the Euler problem presented in Figure 11. As depicted here, starting370

at iteration 4 the residual vector exhibits outlier values near the top surface of

the airfoil which stay at the same location for the rest of the simulation. This

location matches the results from the SVD test performed in Figure 12.
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Figure 13: Residual vector contours in a Burgers problem25
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Figure 14: Residual vector contours in an Euler problem
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3.3. Anomaly Detection

To use the principal components of the solution or the residual to guide mesh375

movement to stabilize a simulation, we must be able to identify the location in

the mesh where numerical problems arise. For this purpose, we rely on anomaly

detection methods, which locate patterns in the data that do not conform well to

the overall structure and behavior. Defining the normal behavior with a precise

boundary can be a challenging task that hinders our ability to effectively detect380

anomalies. The normal region may develop over time and this alters the notion

of outliers. The anomaly detection model selected for a given application de-

pends on different factors such as the availability of labeled data and the type of

anomalies. Such methods include Classification, Clustering, Nearest Neighbors,

Statistical, and Deep Learning models [21]. The majority of these methodolo-385

gies are developed for low-dimensional data. Deep Learning models are best

suited for high-dimensional spaces such as multivariate datasets, images, and

videos. The present study employs PCA to reduce the dimensionality of the

dataset which enables us to use classical ML models for anomaly detection on

the low dimensional space.390

Anomalies can be of different types [22] which is another factor in choosing

the right approach for detection. Global anomalies, which are the most common

type of outliers, refer to observations that deviate largely from the rest of the

data. As mentioned, finding the exact amount of deviation (normal behavior

boundary) is a challenging task and an active area of research. The observations395

considered anomalous in the present study are mainly global values. However,

the vectors used herein can undergo large changes in time which makes our

task even more strenuous. Contextual anomalies are only considered so in a

given circumstance. Take the rainfall in a certain area as an example. A large

amount of rainfall in the winter season might be considered normal behavior400

while a small amount of rain in the summer can be considered anomalous. In

our case, the changes in the solution mode over time are deemed contextual

and can change our notion of anomalous behavior. Collective anomalies happen

when a subset of the observations form an anomalous cluster. In this case,
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each observation in the cluster might be considered normal while the group as405

a whole is an anomalous observation.

Usually, two distinctions are made regarding anomaly detection applications.

Outlier detection refers to the cases where the training data contains anomalies

defined as observations that are far away from the rest of the entries. These

models fit the regions with the highest concentration of training values and select410

the deviant observations as outliers. Novelty detection refers to applications in

which the training data does not contain anomalies. In this case, the goal is

to decide if a new observation belongs to the region suggested by the training

data or not. Outlier detection models are usually unsupervised while novelty

detection is semi-supervised. Both approaches are tested herein to find the415

best-performing one for our application.

A fast and reliable anomaly detection module is crucial for the current study

as we aim to reduce the computational cost of the mesh optimization and sta-

bility improvement approach as much as possible. The working vector (either

the residual vector or the solution modes from PCA) is provided as input to the420

model which is then checked for possible outlier values for further investigation

through the methodology presented herein. Furthermore, this module can help

automate the stabilization process which is a shortcoming of the previous stud-

ies in which human intervention is critical for a successful optimization outcome

[9, 10].425

The standard libraries provided in scikit-learn [23] open source software are

utilized as the main machine learning tools in the present study. Among the

different models, we expect the Local Outlier Factor to perform well on our

datasets due to the nature of our mesh optimization approach. The Elliptic

Envelope model assumes the data has a Gaussian distribution and fits an el-430

lipse to the training set. One Class SVM has a high sensitivity to outliers and

might not perform as well as expected. It requires numerous experiments with

hyper-parameters for fine-tuning to prevent over-fitting of the training set. The

Isolation Forest model classifies data points by randomly selecting a split be-

tween the maximum and minimum values of a randomly selected feature. In435
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such models, outliers are detected based on the depth of the branch; deeper

branches reduce the likelihood of anomalous values.

We have conducted experiments on different outlier detection models to

select the best-performing one for the application of the current study. The

Burgers problem presented in Figure 9 and the Euler problem of Figure 11 are440

selected as our test cases. We aim to detect the anomalous behavior before it

becomes too large in magnitude to give the algorithm enough time for effective

mesh adjustments. The elected anomaly detection methods include the Ro-

bust Covariance [24], Radial Basis Function (RBF) One-Class Support Vector

Machine (SVM) [25], Stochastic Gradient Descent (SGD) One-Class SVM [26],445

Isolation Forest [27], and Local Outlier Factor [28]. Model training in this test

is performed fully unsupervised. The γ value in the SVM models is set to 0.1

and the number of neighbors in the Local Outlier Factor is set to 10. The con-

tamination factor in the Robust Covariance, Isolation Forest, and Local Outlier

Factor models is set based on their respective original papers.450

The γ parameter in SVM intuitively dictates the extent of influence exerted

by an individual training example, where lower values imply a more extensive

reach, while higher values signify a more localized influence. Conceptually, γ

serves as the reciprocal of the radius of influence encompassing samples desig-

nated as support vectors by the model. A very small γ constrains the model455

excessively, rendering it unable to grasp the intricacies of the data. In such

instances, the influence region of any selected support vector spans the entire

training set, resulting in a model that emulates a linear model with hyperplanes

segregating the density centers of each class pair.

Conversely, an excessively large γ confines the area of influence solely to the460

support vector itself, inevitably leading to overfitting. The optimal balance lies

in selecting an appropriate γ that captures the relevant information without

succumbing to either extreme. Meanwhile, the contamination factor serves as

a metric for gauging the degree of data impurity. Specifically, it represents the

proportion of outliers within the dataset. During the fitting process, this factor465

is instrumental in establishing the threshold on the scores assigned to individual
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samples, helping to delineate the boundaries for effective model performance.

SVD is performed on the 10 latest solution vectors in the simulation of the

Burgers problem presented in Figure 9. At iteration 11, the largest solution

mode is extracted and presented in Figure 15a. We have manually selected a470

single vector entry as the outlier, indicated with a red X, and considered the

true label for the data set. Note that the indicated anomalous value is for

evaluation only and is not introduced in the training phase. Figure 15b depicts

the residual value in each cell at iteration 12 of the same problem with four

values selected as true outliers. Each of the five models is trained on both of475

these vectors and evaluated using the true values with the results presented in

Tables 1 and 2. Both SVM models perform poorly while the LOF model has

the highest accuracy of all with a value of 1.0. Herein, anomalous values are the

primary target for classification. As presented, the Local Outlier Factor model

has the highest performance in anomaly classification with 100% precision and480

recall. As shown in Table 2 for the residual test, the SVM SGD test gives the

highest accuracy with a value of 0.99. Here, once again the LOF model is one

of the top performers with an accuracy of 0.93.
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(b) Residual vector at iteration 12

Figure 15: Two working vectors in a sample Burgers problem
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Table 1: Outlier detection evaluation on the solution mode in a sample Burgers problem

Method True Label Precision Recall F1-Score Support Accuracy

Robust Covariance
anomaly 0.00 0.00 0.00 1 0.90

normal 1.00 0.90 0.95 501 0.90

SVM RBF
anomaly 0.00 1.00 0.01 1 0.50

normal 1.00 0.50 0.67 501 0.50

SVM SGD
anomaly 0.00 1.00 0.01 1 0.58

normal 1.00 0.58 0.73 501 0.58

Isolation Forest
anomaly 0.01 1.00 0.01 1 0.69

normal 1.00 0.68 0.81 501 0.69

Local Outlier Factor
anomaly 1.00 1.00 1.00 1 1.00

normal 1.00 1.00 1.00 501 1.00

Table 2: Outlier detection evaluation on the residual in a sample Burgers problem

Method True Label Precision Recall F1-Score Support Accuracy

Robust Covariance
anomaly 0.08 1.00 0.15 4 0.91

normal 1.00 0.91 0.95 498 0.91

SVM RBF
anomaly 0.04 1.00 0.08 4 0.83

normal 1.00 0.83 0.90 498 0.83

SVM SGD
anomaly 0.36 1.00 0.53 4 0.99

normal 1.00 0.99 0.99 498 0.99

Isolation Forest
anomaly 0.09 1.00 0.17 4 0.92

normal 1.00 0.92 0.96 498 0.92

Local Outlier Factor
anomaly 0.10 1.00 0.19 4 0.93

normal 1.00 0.93 0.96 498 0.93

The next test is performed on the Euler problem presented in Figure 11. At

iteration 5, the largest solution mode is extracted and presented in Figure 16a.485

We have manually selected five vector entries as outliers which are indicated

with red X’s and are considered the true labels for this data set. Figure 16b

depicts the residual value in each cell at iteration 6 of the same problem with

five values selected as true outliers. Each of the five models is trained on the raw

data and evaluated using the true values with the results presented in Tables 3490
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and 4. As depicted in Table 3 for the solution mode test, the LOF model has

the highest accuracy of all. The precision score is much lower than the previous

test, however, the recall is 100%. As seen in Table 4 for the residual test, SVM

SGD is the best performing of all models. Here, the performance of the LOF

model is acceptable with an accuracy of 0.98.495
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(a) Largest solution mode at iteration 5
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(b) Residual vector at iteration 6

Figure 16: Two working vectors in a sample Euler problem

Table 3: Outlier detection evaluation on the solution mode in a sample Euler problem

Method True Label Precision Recall F1-Score Support Accuracy

Robust Covariance
anomaly 0.09 1.00 0.16 5 0.91

normal 1.00 0.91 0.95 561 0.91

SVM RBF
anomaly 0.02 1.00 0.05 5 0.63

normal 1.00 0.63 0.77 561 0.63

SVM SGD
anomaly 0.03 1.00 0.06 5 0.74

normal 1.00 0.74 0.85 561 0.74

Isolation Forest
anomaly 0.05 1.00 0.09 5 0.82

normal 1.00 0.82 0.90 561 0.82

Local Outlier Factor
anomaly 0.22 1.00 0.36 5 0.97

normal 1.00 0.97 0.98 561 0.97
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Table 4: Outlier detection evaluation on the residual in a sample Euler problem

Method True Label Precision Recall F1-Score Support Accuracy

Robust Covariance
anomaly 0.09 1.00 0.16 5 0.91

normal 1.00 0.91 0.95 561 0.91

SVM RBF
anomaly 0.17 1.00 0.29 5 0.96

normal 1.00 0.96 0.98 561 0.96

SVM SGD
anomaly 0.83 1.00 0.91 5 1.00

normal 1.00 1.00 1.00 561 1.00

Isolation Forest
anomaly 0.10 1.00 0.18 5 0.92

normal 1.00 0.92 0.96 561 0.92

Local Outlier Factor
anomaly 0.31 1.00 0.48 5 0.98

normal 1.00 0.98 0.99 561 0.98

In Tables 1 to 4, the evaluation metrics Precision (also referred to as positive

predictive value) and Recall (commonly known as sensitivity) are employed

to assess the performance of the models. Precision represents the proportion

of relevant instances among those retrieved, emphasizing the accuracy of the

model’s positive predictions. On the other hand, recall measures the fraction500

of relevant instances that were successfully retrieved, providing insight into the

model’s ability to capture all pertinent instances. Both precision and recall

hinge on the concept of relevance, and the f1-Score is a comprehensive metric

that combines these two measures. The f1-Score is calculated as the harmonic

mean of precision and recall, as expressed in the following equation.505

F1-Score = 2 · Precision · Recall
Precision + Recall (9)

Further, Support shows the number of instances of anomaly and normal while

Accuracy depicts the ratio of correct predictions to the total number of samples.

We have conducted tests to analyze the sensitivity of the classification accu-

racy with respect to changes in γ in the SVM RBF and SGD outlier detection

models to assess the robustness of the selected methods. Figure 17a shows the510

sensitivity of the models when applied to the solution mode in the sample Burg-

ers problem. In this case, the accuracy from the SVM RBF model undergoes
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very little change while the result from SVM SGD is highly sensitive to the value

of γ. Figure 17b reveals a similar test for both of these models when applied

to the residual vector. Here, the SVM RBF shows smooth changes in accuracy515

with respect to the values of γ while the SVM SGD depicts higher accuracy with

more variations. As seen, the accuracy of both models reduces with increasing

γ.
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Figure 17: Sensitivity of accuracy with respect to γ

Figure 18a shows the sensitivity of the models when applied to the solution

mode in the sample Euler problem. In this case, the accuracy from the SVM520

RBF model undergoes smooth changes, reducing with increasing γ. On the

other hand, the result from SVM SGD follows the same trend while being highly

sensitive to the value of γ. Figure 18b reveals a similar test for both of these

models when applied to the residual vector. Here, the SVM RBF shows a sudden

reduction in accuracy in a range of γ values while the SVM SGD depicts higher525

accuracy and fewer variations.
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Figure 18: Sensitivity of accuracy with respect to γ

As depicted in the previous tests on the solution mode, Local Outlier Factor

outperforms the other models in anomaly detection on the datasets provided

herein. The SVM SGD model is best performing on the residual vector tests.

However, the LOF model also has an acceptable performance in these exper-530

iments. As a result, the Local Outlier Factor model is selected for further

analysis. In the current study, the detection of anomalous values in the working

vector is of greater importance than finding the exact number of outliers. This

fact can help improve the efficiency of the outlier detection model and reduce

computational time. In other words, we only need to check the anomalous sta-535

tus of the maximum and minimum entries in the working vector. It is assumed

that all entries, except for the minimum and maximum, are normal values in

the training of the LOF model. In the next step, the minimum and maximum

entries are tested to see if they belong to the normal region or not. This is a

semi-supervised approach and is usually referred to as novelty detection which540

is preferred in the present study.

The working vector can have highly dense areas where even small deviations

from the average distance between neighbors can result in the classification of an

outlier. In other regions the vector might be more sparse where even larger av-

erage distances can be considered normal. To prevent false positive predictions545

(normal entries considered outliers) we have devised a simple workaround. In

this method, the average distance of the minimum and maximum entries from
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their respective neighbors is calculated. The entry is considered an outlier only

if it has the largest average distance of the two. In the outlier detection con-

text herein, “neighbors” are denoting the most similar values in a vector to the550

entry in question which is different from geometric cell neighbors on the mesh.

Another possible solution is to set the number of neighbors (in the anomaly

detection context) equal to the length of the vector. This results in the model

ignoring the local deviations and only focusing on the global outliers. The latter

adversely affects the computational complexity of the model and is disfavored.555

The first novelty detection test is performed on the Burgers problem pre-

sented in Figure 9. The largest solution mode is used to train the LOF model

for novelty detection with the maximum and minimum entries omitted. After

training, the two test values are passed to the model for predictions with the

results presented in Figure 19a. As seen, iteration 9 is selected as the onset of560

outliers in the working vector. This conforms well with our observation from

the solution modes presented in Figure 10. Further, the largest anomalous en-

try points directly to the problematic cell in the mesh which will be modified

in the next step of the algorithm. The same test is repeated on the residual

vector with the results presented in Figure 19b. In this case, some outliers can565

be seen in the early iterations of the solver which are not pointing to the proper

modes for modification. In such cases, checking the history of the location of

the outlier value can help with identifying the correct non-linear iteration for

optimization. No change in the outlier location is an indication of the correct

unstable mode for modification. Nevertheless, the optimization iterations sug-570

gested by the novelty detection in Figure 19b are correct which will result in a

stable solution.
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Figure 19: Anomalous vector classification in the solution of a model Burgers problem

The next novelty detection experiment is performed on the Euler problem

presented in Figure 11. The maximum and minimum vector entries are elim-

inated from the largest solution mode and the remaining is used to train the575

LOF model. Next, the two test values are passed to the model for predictions

with the results presented in Figure 20a. As seen, iteration 6 is selected as the

onset of anomalies in the vector. Once again, this matches our observation from

the solution modes presented in Figure 12. The largest anomalous entry points

directly to the problematic cell in the mesh. The same test is repeated for the580

residual vector in Figure 20b. In this case, some early outliers can be seen which

are not pointing to the correct cells on the mesh for modification. Here, iter-

ation 2 has been erroneously suggested as the onset of the mesh optimization

process.
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Figure 20: Anomalous vector classification in the solution of a model Euler problem

3.4. Synthetic Vectors585

Solution mode outlier identification helps uncover the correct simulation

iteration to apply the stability improvement algorithm. Further, anomalous

solution modes are used to find the correct vertices for modification and to

calculate proper movement vectors. In our application, the anomalies in the

working vector are the most important characteristic. However, such vectors590

usually contain noise which may hinder their full potential usage. As a result,

it is important to identify and remove the noise from the working vectors. A

novel method for noise reduction in an anomalous vector was introduced by

Zandsalimy and Ollivier-Gooch [11]. The unstable numerical modes are highly

local to certain areas on the mesh and only the largest magnitude entries in595

the vector are used for vertex selection. This means the small entries are not

important for mesh optimization and can be ignored.

The noise reduction method starts with selecting the largest magnitude vec-

tor entry and identifying the corresponding cell in the mesh. We retain this cell

and all the neighbors on the mesh that contribute to its flux integral, and the600

rest are omitted. As discussed before, the numerical modes are usually highly

local to a small area of the solution domain. This makes the presented noise
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reduction approach a plausible method for achieving vectors that are similar to

the numerical modes.

The largest solution mode at iteration 9 of the Burgers problem in Figure 9605

is compared to the single unstable right eigenvector in Figure 21a. As seen, the

spike in the eigenvector is successfully resolved in the synthetic vector shown

with a red dashed line. This means the synthetic vector effectively points to the

correct area of the mesh that requires modification for stability. Further, the

cosine of the angle between the two vectors is 0.750 which shows their similarity.610

This figure also depicts the synthetic vector resulting from the residual vector

(shown with a dashed green line) at iteration 12 of the solver compared to

the eigenvector. Once again, the spike in the eigenvector is correctly resolved

and the cosine of the angle between the two vectors is 0.933. The next test is

conducted on the Euler problem presented in Figure 11 at iteration 6 of the615

solver. The largest solution mode in this problem (shown with a dashed red

line) is compared to the largest unstable eigenvector in Figure 21b. As seen, the

spike in the eigenvector is correctly resolved in the synthetic vector. In this case,

the cosine of the angle between the two vectors is 0.813 which shows the two

vectors are once again similar. This figure also depicts the synthetic vector from620

the residual vector at iteration 6 of the solver (shown with a dashed green line)

compared to the right eigenvector. The spike in the eigenvector is successfully

resolved and the cosine of the angle between the two vectors is 0.791.

0 100 200 300 400 500
Vector

0.00

0.25

0.50

0.75

1.00

A
bs

ol
ut

e 
Va

lu
e

Eigenvector
Synthetic Vector Solution Mode
Synthetic Vector Residual

(a) Model Burgers problem

0 100 200 300 400 500
Vector

0.0

0.5

1.0

1.5

A
bs

ol
ut

e 
Va

lu
e

Eigenvector
Synthetic Vector Solution Mode
Synthetic Vector Residual

(b) Model Euler problem

Figure 21: Synthetic vector compared to the right eigenvector
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3.5. Synthetic Eigenvalue Gradients

Let A ∈ Rn×n be a Hermitian Jacobian matrix depending smoothly on a625

real vector ζ ∈ Rn, that is differentiable with respect to ζ. An example for ζ

can be mesh coordinates in the discretization of a finite-volume approach. If x

is the eigenvector associated with the eigenvalue λ, then we can compute the

derivative of the eigenvalues with respect to ζ [29],

dλ

dζ
= xH dA

dζ
x (10)

The term dA

dζ
in Equation 10 can be computed as follows,630

dA

dζ
=

∂A

∂U

∂U

∂ζ
+

∂A

∂ζ
(11)

In this equation, U is the solution vector. We assume, and past numerical

experiments have confirmed, that the derivative of solution with respect to mesh

coordinates is small [9]. As a result, the first term in Equation 11 is negligible

compared to the second term. Hence, we can approximate the derivative of the

Jacobian matrix with respect to mesh movement, dA

dζ
, readily using the finite635

difference method.
dA

dζ
≈ ∂A

∂ζ
=

A(ζ + δζ)−A(ζ)

δζ
(12)

Changes in each vertex location only affect the residual of the cells whose flux

integral depends on cells with that vertex in their reconstruction stencil. As a

result, for the calculation of dA

dζ
only a small number of rows in the Jacobian

matrix are recalculated at each iteration. Finally, using the eigenvalue gradients640

we can compute proper movement vectors to make favorable changes to the

eigenmodes for improved stability of the numerical simulation. Note that we

apply this approximation in our approach even though the Jacobian matrix

herein can be non-symmetric.

The eigenvalue gradients with respect to changes in the mesh are computed645

for the model Burgers and Euler problems. Table 5 presents the eigenvalue

gradients calculated using the synthetic vector as well as using the actual eigen-

vectors. Each major column in this table includes two sub-columns referring to
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the gradients with respect to mesh movement in x and y directions. In the case

of the Burgers problem, the cosine of the angles between the actual gradients650

and the synthetic vectors based on the solution mode and the residual are 0.994

and 1.000, respectively, which means each pair of vectors are quite similar. In

the case of the Euler problem using the solution mode, the cosine of the angle

is -0.955 which means the two vectors are pointing in almost exactly opposite

directions. However, in the case of the Euler problem using the residual, the co-655

sine is 0.951. Further, we note that the magnitudes of synthetic gradients differ

from the actual ones. However, as the smaller gradients are still substantially

larger than the unstable eigenvalues in question, this method results in stability

improvement given proper vertex modification.

Table 5: Synthetic eigenvalue gradients compared to the actual gradients

Test Working Vector Synthetic Gradients Actual Gradients

w.r.t. x w.r.t. y w.r.t. x w.r.t. y

Burgers
Solution Mode 197.080+0I 30.476+0I 2665.025+0I 721.758+0I

Residual Vector 518.990+0I 125.740+0I 2460.110+0I 657.230+0I

Euler
Solution Mode -39.292+0I -65.797+0I 164.505+0I 678.633+0I

Residual Vector 85.060+0I 137.750+0I 164.505+0I 678.633+0I

4. Algorithm Summary660

The modules discussed previously are assembled and a novel stability im-

provement approach is proposed. The architecture is depicted in Figure 22 pre-

sented in conjunction with the non-linear solver. At each non-linear iteration,

depending on the approach, either SVD is performed on a collection of solution

vectors to find the largest solution mode or simply the residual vector is stored665

in memory. The solution modes/residual vector are used as training data in the

classification module. The maximum and minimum vector entries are tested

for anomalies. Hence, instabilities are detected automatically and a decision is

made to continue the optimization approach. The elimination of human inter-
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vention from the optimization procedure is an important improvement over the670

previous techniques. Going forward in the optimization, synthetic vectors and

eigenvalues are constructed. The synthetic vectors closely resemble the right

eigenvectors, pointing in similar directions. Synthetic vectors are then utilized

to find proper vertices and to calculate movement vectors for effective mesh

modification. The next innovation of the presented architecture is the complete675

elimination of the eigenanalysis module. As mentioned earlier, the eigenvalue

problem was the bottleneck and limiting factor for mesh optimization in previ-

ous studies. The elimination of this module brings us one step closer to a more

feasible stability improvement software that can be readily incorporated into

current CFD solvers.680

It is crucial to highlight that our proposed method relies on the linear ap-

proximation of the numerical simulation to assess the dynamic behavior of the

solution. As a result, the anticipated stability enhancement is expected to man-

ifest primarily in the linear proximity of the current numerical solution. It

is worth noting that in simulations characterized by high nonlinearity, where685

the solution undergoes significant changes from one time step to the next (e.g.

flutter or buffet), the effectiveness of the mesh modification suggested by our

method may diminish over time. In such instances, if the simulation encounters

issues with the linear solution at a particular time step, our method can be

applied to modify the mesh and enhance numerical stability for that specific in-690

terval. As the simulation progresses, if necessary, our method can be reapplied

iteratively to address evolving stability needs throughout the simulation. This

adaptive approach ensures that our method remains flexible and responsive to

dynamic changes in the simulation environment, consistently contributing to

improved numerical stability when required.695
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Figure 22: Overview of the novel stabilization approach
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5. Results

The results of the novel mesh optimization approach are depicted in the

current section. Experiments are performed on different physics, boundary con-

ditions, and meshes. First, the effectiveness of the presented methodology is

discussed. Next, the computational cost and resource savings are illustrated700

and compared to previous studies.

5.1. Mesh Optimization

The inviscid Burgers problem is selected as the first test case in this section

as presented in Section 2.2. An unstructured mesh with 500 cells is generated

using the GRUMMP software [14]. The problem is solved using the finite-705

volume method paired with Crank-Nicolson time integration with a fixed CFL

number. Figure 23a presents the original mesh in black. As seen in the residual

history of Figure 23b, the original solution before the optimization is unstable.

The classification module identifies an anomalous solution mode at iteration 9

of the solver. After constructing the synthetic vectors and calculating move-710

ment vectors, the mesh is modified to the red one. It is possible to continue

the simulation from the iteration where mesh optimization was performed or

restart the solution completely. Herein, we choose to restart the solution for a

better comparison with the previous studies. The restarted solution on the new

optimized mesh is stable and converges to 10−10 in 40 iterations (presented in715

solid red). Comparing this to the work of Zandsalimy and Ollivier-Gooch [9]

shows the convergence in the previous method happens at around 70 iterations.

The residual history in both studies follows the same path up to iteration 30,

after which, the convergence rate is higher in the current method. It is con-

cluded that after optimization the least stable mode in the current study has a720

smaller real component compared to the previous work. The optimization on

the same Burgers problem and mesh combination is repeated using the residual

vector. According to the classification module, the residual vector is anomalous

at iteration 12 of the solver. The mesh optimization at this iteration results
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in full stabilization of the problem with the results presented in Figure 23 in725

blue. As seen, the new residual history closely follows the work of Zandsalimy

and Ollivier-Gooch [9] with mesh movement similar to the solution mode case.

As seen, using the solution modes for mesh optimization resulted in a faster

convergence rate.
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Figure 23: Mesh optimization in a Burgers problem with 500 cells

The same experiment is conducted on a mesh with 1100 control volumes730

presented in Figure 24a. The original solution is unstable as seen in Figure 24b.

The first anomalous solution mode is identified by the novelty detection module

at iteration 6 of the simulation. The mesh optimization approach results in

generating the magenta mesh. As presented in the residual history plot, the so-

lution after the first optimization iteration is still unstable. The next anomalous735

solution mode is identified at iteration 14 on the new solution. The optimization

algorithm results in the cyan mesh and residual history. As seen, the second

iteration of the optimization is also unstable. The next automatic optimization

iteration occurs at iteration 15 on the latest mesh and results in the generation

of the blue mesh. According to the residual history plot, the new simulation is740

stable and converges to 10−10 in less than 250 iterations. At this point, a bet-

ter convergence rate is achieved in comparison to the work of Zandsalimy and
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Ollivier-Gooch [11] which utilized the residual vector for mesh optimization.

This algorithm is capable of finding anomalous values even for stable sim-

ulations as PCA and anomaly detection is performed at every iteration of the745

simulation. The next anomalous solution mode is identified at iteration 23 of

the simulation. Figure 24a presents the new mesh in green and Figure 24b shows

the residual history. As seen, the convergence is initially faster than the blue

residual history, however, they end up converging to 10−10 at the same non-

linear iteration. The next anomalous solution mode is identified at iteration 66750

of the simulation. This optimization iteration results in the red residual history

with a much greater convergence rate in comparison to the previous iteration.

The new simulation converges in 50 non-linear iterations which is a considerable

improvement over the previous methodology.
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Figure 24: Mesh optimization in a Burgers problem with 1100 cells

The Burgers problem is solved on a mesh with 1400 control volumes pre-755

sented in Figure 25a. The original solution is unstable as seen in Figure 25b.

The first anomalous residual vector is identified by the novelty detection mod-

ule at iteration 32 of the simulation. The mesh optimization approach results

in generating the blue mesh. As seen in the residual history plot, the solution

after the first optimization iteration is still unstable. The next anomalous resid-760
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ual vector is identified at iteration 40 on the new solution. The optimization

algorithm results in the red mesh and residual history. As seen, the second

iteration of the optimization is stable. Comparing this result with the work of

Zandsalimy and Ollivier-Gooch [11] we have achieved a stable solution with a

slower convergence rate, but without the need for human intervention.765
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Figure 25: Mesh optimization in a Burgers problem with 1400 cells

The same Burgers problem is solved on a mesh with 1500 cells using the

Crank-Nicolson time-stepping method. The initial simulation is stable as seen

in Figure 26b. However, it seems that at around iteration 35, a slow converg-

ing mode dominates the simulation which is identified with a reduction in the

convergence rate in the residual history. The first anomalous solution mode is770

discovered at iteration 32 of the simulation. The optimization program modifies

the mesh to the red one presented in Figure 26a. As seen in the residual plot,

the convergence rate is improved substantially and the slow converging mode is

eliminated by moving a single vertex in the mesh.
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Figure 26: Mesh optimization in a Burgers problem with 1500 cells

The Burgers problem is repeated on a mesh with 4500 cells in Figure 27. As775

depicted in the residual history plot, the initial simulation on the black mesh is

stable and converges in just over 150 iterations of the non-linear solver. Once

again, the slow convergence behavior in the residual history is seen. SVD is

performed on a collection of the 10 most recent solution vectors and the largest

solution mode is passed through the anomaly detection module. The maxi-780

mum and/or minimum entries in the working vector are classified as novelties

at iterations 54, 56, and 61 of the solver. The optimization approach at these

iterations results in the blue, green, and red meshes, respectively. The residual

history depicts the effectiveness of the approach in eliminating the slow con-

verging modes from the simulation. The latest residual history in red shows785

much faster convergence compared to the original simulation.
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Figure 27: Mesh optimization in a Burgers problem with 4500 cells

The Euler problem is solved around the NACA-0015 airfoil inside a cylindri-

cal outer domain with a radius of 500 airfoil chords as presented in Section 2.2.

The first simulation is performed with Crank-Nicolson time integration on a

mesh with 600 cells and the results are presented in Figure 28. As depicted790

in the residual history in black, the original simulation is unstable. The first

anomalous solution mode is detected at iteration 391 on cell 314. The appli-

cation of our mesh optimization methodology results in the mesh presented in

blue. The residual history indicates that the new solution is stable and converges

in around 2200 iterations of the non-linear solver. Compared with the result795

of Zandsalimy and Ollivier-Gooch [9], the current approach provides a better

convergence rate while making changes to the same vertex in the mesh. The

next anomalous solution mode is detected at iteration 116 of the solution on cell

413 which is located near the trailing edge of the airfoil. The latest optimization

iteration results in the mesh and residual history presented in red. The con-800

vergence rate has once again improved substantially compared to the previous

approach. Repeating the same experiment using the residual vector, the first

outliers are detected at iteration 350 of the solver. The new mesh and residual

history are presented in solid green. As seen in this case, the convergence rate
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closely follows that of [9].805
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Figure 28: Mesh optimization in an Euler problem with 600 cells

The same Euler problem is solved on the same mesh with 600 cells using

the implicit Euler time integration method and the results are presented in Fig-

ure 29. The solver implements local time-stepping with CFL evolution strategies

for the fastest possible convergence. Put simply, the time step is increased when

the solution gets closer to the final answer (decrease in residual) and vice versa.810

The residual history plot shows that the original simulation is unstable on the

black mesh. The first anomalous solution mode is detected at iteration 6 on

cell 321 and the optimization program modifies the mesh to the red one. The

residual history in red shows the simulation is stable, converging in 7 iterations

which is on par with our previous approach. Repeating the same test with815

the residual vector, iteration 6 is selected as the onset of outliers. Performing

the optimization at this iteration results in the mesh and residual history pre-

sented in blue. Once again, a stable solution is achieved with a convergence rate

comparable to the previous tests.
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Figure 29: Mesh optimization in an Euler problem with 600 cells

The same Euler problem is solved on a mesh with 7600 cells using the implicit820

Euler time-stepping method paired with CFL evolution strategies. The anomaly

detection module indicates the first novelties in the largest solution mode at

iteration 10 of the implicit solver on cell 2526. Only one optimization iteration

results in a stable solution presented in the red residual history of Figure 30b.

The modified mesh is shown in red in Figure 30a.825
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Figure 30: Mesh optimization in an Euler problem with 7600 cells
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5.2. Computational Cost

One of the main drawbacks of the previous studies is the high computational

complexity of their respective approach. The current work aims to reduce the

run-time of different modules in the mesh optimization algorithm by improv-

ing the module complexity or eliminating the bottleneck modules. Figure 31830

summarizes the run-time of different components in the presented approach for

an Euler problem on different mesh sizes. In this figure, the solid lines repre-

sent the results from the current study, while non-solid lines indicate previous

works. On the other hand, each symbol represents a different computational

module in the algorithm. Movement vector calculation, flow solver, and Jaco-835

bian computations are the same across all three studies. Principal component

analysis replaces the eigenanalysis module from the approach by Zandsalimy and

Ollivier-Gooch [9]. PCA is 300 times faster than the eigenanalysis and its cost

increases at a slower rate with increasing mesh size. Further, the comparison of

the anomaly detection modules from the current study and the work of Zandsal-840

imy and Ollivier-Gooch [11] depicts an improvement of one order of magnitude.

This module occupies a negligible amount of computational resources in both

studies. The anomaly detection component utilized in the present work is a

Local Outlier Factor type with a time complexity of O(n2) [30]. The overall op-

timization complexity shows that the current work is 2.5 times faster compared845

to the work of Zandsalimy and Ollivier-Gooch [9] which is mainly due to the

complete elimination of the eigenanalysis unit. On the other hand, the current

work is just as efficient compared to the work of Zandsalimy and Ollivier-Gooch

[11]. Because the current approach is fully automated, it can be applied to a

wider variety of finite-volume simulations with more confidence.850
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Figure 31: The optimization run-time of an Euler problem

6. Conclusion

This study prototypes novel methods for stability improvement and mesh op-

timization in unstructured finite-volume methods. The new algorithm is based

on a previous approach in which computational complexity is one of the main

shortcomings. A novel approach is presented to distinguish numerical and phys-855

ical modes in a CFD simulation. The new methodology eliminates the eigen-

analysis module and utilizes principal component analysis/residual vector for

unstable mode identification. PCA is performed on a collection of the latest so-

lution vectors to calculate the dominant modes in the simulation. The solution

modes/residual vectors are used as training data in the classification module and860

the maximum and minimum entries are checked for outliers. In the next step,

synthetic vectors are constructed using the anomalous solution modes which

resemble the eigenvectors. These vectors are then used for mesh vertex identifi-

cation and movement vector calculation. It is shown that the novel method can

be utilized to stabilize initially unstable CFD solutions and also to improve the865

convergence rate of slow converging simulations. The novel mesh optimization

methodology presented herein is 2.5 times faster than the previous approach

which utilized eigenanalysis of the Jacobian matrix for stability improvement.
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The next major contribution of the current study is the complete automation

of the optimization approach. Automatic anomaly detection removes the hu-870

man intervention required to initiate the mesh optimization algorithm. The new

method automatically identifies diverging solution modes and provides remedies

before they have a chance to completely blow up in the solution.
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