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Abstract

We present a novel method for improving the numerical stability of finite volume

simulations by optimizing the mesh through dynamic mode decomposition of

solution update vectors. Our approach leverages dynamic mode decomposition

to approximate the non-linear solution evolution as a linear mapping, enabling

us to represent the dynamic system with fewer degrees of freedom. By conduct-

ing eigenanalysis on the reduced system, we gain insights into the growth rate

and oscillation frequency of dominant solution modes. We then identify the

control volumes and vertices that have a significant influence on each dynamic

solution mode. We compute the gradients of the Jacobian diagonal elements

with respect to the movement of the selected vertices. Based on these gradi-

ents, we adjust the positions of the vertices to improve the diagonal dominance

of the corresponding Jacobian rows. We utilize this approach in conjunction

with our in-house flow solver as well as with Ansys Fluent to test its effective-

ness when applied to different types of CFD software architecture. We show

that the presented methodology is fully non-invasive to the host flow solver and

does not require any modifications or access to the source code. Our approach

offers a substantial computational cost reduction compared to existing methods

for numerical stability improvement. Various results demonstrate the strength

and efficacy of this state-of-the-art approach for improving numerical stability
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1. Introduction

In recent years, attention has been given to mesh optimization as a means to

achieve improved numerical stability in Computational Fluid Dynamics (CFD)

applications. One particular area of focus has been addressing the linear sta-

bility of the dynamic system, as highlighted by Zandsalimy and Ollivier-Gooch5

[1]. Building upon this line of research, we propose a pioneering approach for

mesh optimization that utilizes the computationally cheap Dynamic Mode De-

composition (DMD) technique. By employing DMD on solution update vectors,

we devise a novel method to enhance finite-volume simulation stability, offering

promising avenues for further advancements in this field.10

The main purpose of a “high quality” mesh is to facilitate a numerical solu-

tion that yields accurate and reliable outputs. Previous investigations of trun-

cation error have shown no strong connection with a priori mesh quality met-

rics based solely on geometric characteristics [2]. Despite this, mesh generation

methods that optimize such metrics are used frequently in automated mesh gen-15

eration, and are quite successful for simulations with nearly isotropic solutions

that exhibit slow variations. It is important to define more sophisticated mesh

quality measures and optimization techniques for problems in which accuracy

depends mostly on solution characteristics.

Habashi et al. [3] took an early step towards mesh and solver independent20

CFD solutions. Their method utilized a directional error estimator coupled

with a mesh adaptation technique to obtain a controllable solution error level.

They also showed that the order of accuracy of the numerical scheme has a
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reduced impact on solution accuracy for a well adapted mesh. Jiao [4] intro-

duced a method of local volume conservation for meshes under smoothing or25

other types of mesh adaptation. This is critical in mesh optimization due to

challenges posed during mesh modification such as preservation of sharp fea-

tures and volume conservation. Scherer et al. [5] developed a numerical method

for energy-based mesh optimization in CFD. They treated mesh optimization

as a nonlinear minimization problem with equality and inequality constraints.30

Clark et al. [6] presented a mesh optimization strategy to produce “high quality”

triangular meshes preserving the geometry for a high-order numerical solution.

They showed that low-order remeshing can reduce the convergence accuracy or

even cause numerical instability.

Zandsalimy and Ollivier-Gooch [1] focused on finite volume mesh optimiza-35

tion for improved numerical stability and convergence behavior. This method

relies on the computationally expensive eigenanalysis of large sparse linear sys-

tems. Additionally, the optimization process necessitated frequent human in-

tervention for critical decision-making in the process. To address these issues,

Zandsalimy and Ollivier-Gooch [7] proposed a novel method for mesh modifica-40

tion through unsupervised anomaly detection in the residual vector. By exclu-

sively analyzing the residual vector, they successfully identified unstable solution

modes, eliminating the need for computationally expensive eigenanalysis. Syn-

thetic vectors resembling the unstable eigenvectors were constructed from the

residual and employed for mesh optimization. This novel approach automated45

the process entirely, eliminating the requirement for human decision-making.

In a separate contribution, Zandsalimy and Ollivier-Gooch [8] applied an

improved outlier detection model to the solution modes resulting from Princi-

pal Component Analysis (PCA) of solution update vectors for unstable mode

identification. This innovative approach yielded a fully automated method for50

dynamically modifying meshes during the numerical solution of finite volume

problems. Once again, the researchers observed notable enhancements in nu-

merical stability and convergence behavior. Building on their previous work,

Zandsalimy and Ollivier-Gooch [9] presented a mesh optimization approach
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based on the dynamic mode decomposition of solution update vectors. This ap-55

proach involved leveraging the eigenanalysis of the small-scale projected linear

mapping to identify the unstable solution modes during the numerical simu-

lation. The DMD eigenvectors were utilized to determine appropriate vertices

for mesh modification, as well as to calculate the gradients necessary for pre-

cise vertex displacement. Zandsalimy and Ollivier-Gooch [10] described a novel60

method for approximate eigenanalysis of the Jacobian matrix for solution mode

identification. They successfully utilized this approach in the context of mesh

optimization for numerical stability improvement.

Similar to previous works of [7, 8], our focus here is on identifying domi-

nant solution modes in numerical simulations without relying on eigenanalysis65

of the Jacobian matrix. This alternative approach, as demonstrated in the

current study, offers significant computational savings. The dynamic solution

modes are obtained using the dynamic mode decomposition technique, applied

to a subset of the most recent solution update vectors. Notably, the number

of solution update vectors required is independent of the number of degrees70

of freedom, making DMD computationally much more efficient compared to

the eigenanalysis of the Jacobian matrix. Compared to principal component

analysis of solution update vectors, DMD provides a superior approximation of

solution modes while incurring only a negligible increase in computational cost.

Additionally, DMD enables early identification of problematic solution modes75

before they lead to solution divergence or numerical instability. This timely

identification of unstable solution modes was a challenge in previous studies

that laid the foundation for our current work.

Once the timely identification of the unstable solution modes is addressed,

the next challenge lies in determining the specific cells and vertices that sig-80

nificantly influence the solution modes in question. To differentiate between

numerical and physical solution modes, we employ the methodology proposed

by Zandsalimy and Ollivier-Gooch [8]. This technique involves calculating the

gradients of the Jacobian eigenvalues with respect to mesh movement in or-

der to identify numerically unstable modes. Unlike physical modes, numerical85
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modes exhibit large gradients in response to local changes in the mesh and are

typically concentrated in specific control volumes with few non-zero elements.

When encountering unstable numerical modes during a simulation, DMD eigen-

vectors also point to a local selection of cells which helps with the correct vertex

identification. For each control volume of interest, we choose a single vertex to90

modify and perform shape optimization.

In contrast to the work of [1], a new approach is adopted herein to calcu-

late proper vertex modification vectors for improved numerical stability of the

solution. This technique involves computing the Jacobian diagonal gradients

of the rows in question. Experimental results show that a dynamic system95

with improved Jacobian diagonal dominance offers better numerical stability.

Furthermore, according to the Gershgorin circle theorem [11], better Jacobian

diagonal dominance corresponds to an improved set of circles that are located

further to the stable side of the eigenspectrum. Although this approach does

not guarantee that all the eigenvalues of the Jacobian will lie on the stable side100

of the eigenspectrum after mesh optimization, it is still a step in the right di-

rection. Further, our experimental results depict improved stability on a wide

range of finite volume simulations utilizing this mesh optimization technique.

2. Background

2.1. Numerical Approach105

The finite volume method is utilized for the discretization of the Partial

Differential Equations (PDE) herein. This work primarily focuses on non-linear

PDEs. The general conservation equation can be written as follows.

∂U

∂t
+∇ · F (U) = s(U) (1)

Here, U are the conserved quantities, F (·) is the flux tensor, and s(·) is the

source term. In this equation, the second term on the left hand side and the right110

hand side term are non-linear. To obtain a numerical solution to Equation 1, the

solution domain is discretized into a set of non-overlapping control volumes Ωi
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the union of which builds the entire solution domain. We can write the integral

form of Equation 1 by integrating over each fixed control volume as follows.
d

dt

∫
Ωi

Ū +

∮
∂Ωi

F (Ū) · n̂dS −
∫
Ωi

s(Ū)dΩ = 0 (2)

Here, Ū are the control volume averages of the conservative variables and n̂ is115

the unit outward pointing normal vector from the faces of cell Ωi. The Gauss

divergence theorem has been used to convert the flux divergence integral into

a surface integral over the boundaries. Assuming the control volumes are fixed

to space, we can pull the time derivative out of the integral by the Reynolds

transport theorem. In the finite volume method, a numerical solution Uh is120

sought that approximates the control volume averages Ū . As a result, we can

rewrite Equation 2 as follows.

|Ωi|
dUh

dt
= −

∮
∂Ωi

Fh(Ū) · n̂dS +

∫
Ωi

s(Ū)dΩ = R(Uh) (3)

Here, |Ωi| is the volume of cell Ωi and R(·) is the steady state residual vec-

tor. Equation (3) can be discretized in time using an appropriate Ordinary

Differential Equation (ODE) time integrator. In a number of experiments in125

this work, the Crank-Nicolson time advance scheme is utilized as presented in

Equation (4).

δUh

δt
=

Uk+1
h −Uk

h

δt
=

1

2

(
R(Uk+1

h ) +R(Uk
h )
)

(4)

where δt is the time-step size. The linearization of this equation results in the

following approximation,(
1

δt
I − 1

2

∂R

∂Uh

)
δUh = R(Uk

h ) (5)

Implicit Euler method (backward Euler) is another time advance scheme130

utilized in the current study. This approach to time integration is presented as

follows,
δUh

δt
=

Uk+1
h −Uk

h

δt
= R(Uk+1

h ) (6)

This methodology is locally conservative which guarantees global conserva-

tion. The surface flux integral in Equation 3 can be calculated with second-order

accuracy through the following procedure.135
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1. Reconstruct the control volume averages using the linear least-squares

method.

2. Compute the flux at each quadrature point on the boundaries of each cell.

Roe’s scheme [12] is used for inviscid flux calculation in the present study.

3. Find flux values using Gauss quadrature rules.140

The Jacobian matrix ∂R

∂U
can be calculated using the finite difference method

or by chain rule differentiation [13] as follows.

∂R

∂U
=
∂FluxInt
∂Flux

∂Flux
∂RecSol

∂RecSol
∂RecCoef

∂RecCoef
∂PVars

∂PVars
∂CVars (7)

Here, FluxInt is the flux integral, Flux are the numerical fluxes, RecSol are the

reconstructed solutions at Gauss points, RecCoef are the reconstruction coeffi-

cients, PVars are the control volume averages of the primitive variables used in145

the reconstruction, and CVars are the control volume averages of the conserved

variables [13]. Herein, only the matrix-vector products of the Jacobian matrix

are required which enables us to use a matrix-free approach when necessary. It

should be noted that the stability improvement methods presented in this study

are matrix-free which does not necessitate the flow solver to be matrix-free as150

well. In fact, one of the flow solvers in our experiments provides explicit access

to the Jacobian matrix while the other is a fully matrix-free approach.

To solve the non-linear system of equations, we have utilized a Newton-based

solver that uses a line search method. In this approach, at every non-linear

iteration, the approximate solution to the linear system of equations is calcu-155

lated and the result is applied to update the solution vector. The Generalized

Minimal Residual (GMRES) method [14] is used for the solution to the lin-

ear system. This method is available in many linear algebra packages such as

Portable, Extensible Toolkit for Scientific Computation (PETSc) [15] which is

our library of choice. The convergence behavior of GMRES strongly depends160

on the eigenspectrum of the coefficients matrix. A more compact eigenspectrum

would result in fewer iterations of the linear solver for convergence. We utilize

preconditioning to improve the condition number of the coefficients matrix to

enhance GMRES performance.
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Zandsalimy and Ollivier-Gooch [1] were able to identify unstable non-linear165

solutions by analyzing the eigenspectrum of the Jacobian matrix (linear coeffi-

cients matrix). According to Lyapunov stability theory [16], eigenvalues with

positive real parts in the coefficients matrix will result in solution instability.

The real part of an eigenmode depicts the solution mode growth rate and the

imaginary part signifies the oscillation frequency. The unstable numerical modes170

are highly local to certain areas in the mesh used for the solution to the PDEs.

Using the right eigenvectors associated with the unstable modes, Zandsalimy

and Ollivier-Gooch [1] identified the problematic control volumes and vertices

on the mesh whose shape and location have a considerable influence on the

eigenmode in question. They were successful in calculating proper modifica-175

tion vectors for the selected vertices that would result in moving the unstable

eigenvalues to the stable region.

Although highly effective in stabilizing unstable non-linear PDE solutions

and improving the convergence rate, this method relied on the computationally

expensive eigenanalysis of the large sparse Jacobian matrix. Herein, the conver-180

gence rate improvement refers to a reduction in the number of solution iterations

to reach the convergence criteria. Another issue with the proposed method was

the requirement for human decision to turn on the mesh optimization process

at intermediate solution iterations. To rectify these issues, we proposed the

use of outlier detection models on the residual history or the principal compo-185

nents of solution update vectors [7, 8] for unstable solution mode identification.

These new methods completely automated the mesh optimization approach and

removed the need for eigenanalysis. Consequently, the computational require-

ments of the proposed method were reduced dramatically. In these improved

methods, synthetic vectors are formed out of the residual vector or the principal190

components of the solution that resemble and behave like the unstable eigenvec-

tors. Such vectors were shown to have a large dot product with the eigenvectors

in question which made it possible to replace the eigenvectors completely. The

current study addresses the complications faced by Zandsalimy and Ollivier-

Gooch [1] in a novel approach. The unstable solution mode identification is195
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reached by means of dynamic mode decomposition of a collection of the most

recent solution update vectors.

2.2. Dynamic Mode Decomposition

Dynamic mode decomposition is a data reduction method to quantify the

dynamic solution behavior from a selection of solution snapshots [17]. Let xi ∈200

Rm be the solution vector at iteration i in which m is the number of degrees of

freedom. To extract the time dynamics, DMD assumes a time-invariant linear

mapping A between two subsequent solution snapshots as,

xk+1 = Axk (8)

We form an order-n Krylov subspace of A generated by x1 as,

Kn1 (A,x1) = {A0x1,A
1x1,A

2x1, . . . ,A
n−1x1} = {x1,x2, . . . ,xn} (9)

Forming a different order-n Krylov subspace Kn2 (A,x2), we can write the205

following equation,

Kn2 (A,x2) = {x2,x3, . . . ,xn+1} = AKn1 = Kn1B + r (10)

Here, r is a residual vector. The matrix B, which is an approximation of the

linear mapping projected onto a much smaller space, can be determined by

minimizing the Frobenius norm of the residual as,

B = argmin
B̂

∥∥∥K2 −K1B̂
∥∥∥
F

(11)

There exists a different method of computing a modified form of B instead210

of this optimization problem. The singular value decomposition of the matrix

K1 can be used for this purpose. In this approach, K1 is decomposed as,

K1 = UΣV H (12)

in which, Σ is a diagonal matrix containing the singular values while U and V

contain the left and right singular vectors, respectively. Here, (·)H denotes the
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Hermitian transposed of a matrix. To generate the modified small-scale repre-215

sentation of the linear operator B̃ = UHAU , we can substitute Equation 12 in

Equation 10 and rearrange to get,

B̃ = UHK2V Σ−1 (13)

The eigenvalues of B̃ and A are the same and the eigenvectors of the original

linear mapping wA can be computed using the eigenvectors of the projected

space wB̃ as,220

wA = K2V Σ−1wB̃ (14)

The eigenanalysis of the small-scale matrix B is performed using a Krylov-

Schur approach. Our library of choice for these computations is the Scalable

Library for Eigenvalue Problem Computations (SLEPc) [18]. Note that in DMD,

the large-scale mapping A is never computed at any stage of the computations.

DMD provides highly accurate time dynamics of solution modes when applied225

to a small selection of solution update vectors. This high level of accuracy

makes DMD a desirable approach for solution mode identification in numerical

simulations. To test this, the 3-dimensional Advection problem is solved on a

3×1×1 square channel with 754 tetrahedral control volumes. DMD is performed

on the 10 most recent solution update vectors. The DMD eigenvalue magnitude230

history is shown in Figure 1a in which each color depicts the history of a different

eigenvalue with solution iteration. DMD eigenvalues in the current study refer to

the eigenvalues of the small-scale representation of the system, B̃. As seen, there

is a single unstable DMD mode with a magnitude larger than 1.0 at iteration 20

and onward. Before this solution iteration, non-linear effects resulting mainly235

from the initial conditions dominate the solution which is why the unstable

solution mode takes a few iterations to show up in the DMD analysis. In other

words, a few iterations are required for the numerical solution to dissipate the

effects of the initial conditions and arrive at the correct solution orbit. The

residual history of this problem shown in Figure 1b depicts a log-linear growth240

rate after iteration 30 of this unstable problem. The Frobenius norm of the

residual vector on the right hand side of Equation (3) is used to generate the
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residual history plots in the current study. In the divergence section, the residual

ratio at two subsequent iterations is 1.04495747. The magnitude of the sole

unstable DMD mode after iteration 30 is 1.04498849. These two values have245

a relative difference of 0.003% which shows an accurate residual growth rate

prediction by the DMD analysis on the solution update vectors.
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(a) DMD Eigenvalue Magnitude
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(b) Residual History

Figure 1: DMD eigenvalue magnitude predicting residual growth rate in a 3D Advection

problem

In another test for two different simulations, DMD is performed on the 10

most recent solution update vectors and the magnitudes of B̃ eigenvalues are

shown in Figure 2 in which the changes to each eigenvalue are presented with250

a different color. Figure 2a depicts the results for a stable Burgers problem

where the magnitudes of B̃ eigenvalues stay smaller than 1.0. Figure 2b shows

the results of an unstable Burgers problem in which some eigenvalues have a

magnitude larger than 1.0. DMD eigenvalue magnitude indicates the behavior

of the dominant solution modes which can be used to automatically start the255

mesh optimization module without the requirement for human intervention that

was a prerequisite for the approach in [1].
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Figure 2: Eigenvalue magnitude of B̃ for two example Burgers problems [9]

The possibility of large computational savings is another important aspect of

using DMD in the mesh optimization algorithm. The eigenanalysis module was

the most computationally expensive component of the approach presented by260

[1] with a cost of O(m3) for a simulation with m degrees of freedom. Conversely,

using a small number of solution update vectors (n≪ m) in the DMD approach,

we get a computational cost of O(mn2) which is a substantial improvement over

the previous approach.

3. Methodology265

The working details of the novel mesh optimization approach for improved

numerical stability of CFD solutions are presented in this section. To address the

issues faced by Zandsalimy and Ollivier-Gooch [1] (discussed in subsection 2.1),

DMD is performed at every non-linear solution iteration so that unstable modes

can be identified automatically. DMD vectors are highly similar to the unsta-270

ble eigenvectors in the solution (dot product close to 1.0 and dominant values

resolved). As a result, we can use DMD modes for problematic cell and vertex

selection without performing a computationally expensive eigenanalysis. Fur-

ther, a novel approach is presented to calculate vertex modification vectors that

is more computationally feasible than the previous methods.275
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3.1. Solution Mode Identification

Performing DMD on a collection of the most recent solution update vectors

provides the dominant eigenmodes of the simulation. The eigenvalue magnitude

shows the growth rate for each solution mode. As a result, the unstable modes

can be identified with a magnitude greater than 1.0 and selected for further280

analysis during the mesh optimization procedure. However, in some cases, the

simulation can include stable eigenmodes with a magnitude close to 1.0 that

would dominate the simulations with a slow converging behavior. In such cases,

the slow converging modes that have a magnitude smaller than 1.0 can also

be selected as eigenvalues of interest for modification. Examples of unstable285

solution modes during DMD analysis of different problems are presented in

Figures 1 and 2. Further, the mesh optimization module can be started as soon

as eigenmodes of interest are detected for a fully automated mesh optimization

procedure.

3.2. Cell and Vertex Selection290

After identifying the unstable solution modes in the simulation, we can

change one or more independent variables in the simulation with enough in-

fluence on the selected eigenmodes to improve the stability and convergence

behavior of the numerical solution. The physics, boundary conditions, recon-

struction method, time-step size, mesh topology, refinement, and vertex loca-295

tions all can have considerable changes to a given numerical mode. In the current

study, we narrow our focus to mesh vertex locations for unstable solution mode

modification. In this approach, a collection of vertices on the mesh are selected

whose locations have the highest possible effect on the eigenmodes in question.

Through calculated changes in vertex locations, we can induce favorable changes300

to the selected eigenmodes for better stability and convergence behavior.

Similar to the approach by [1], we select a single vertex on the mesh to sta-

bilize each unstable solution mode. Proper vertex selection involves calculating

the gradients of each eigenmode with respect to the movement of all vertices

on the mesh. The vertex with the largest gradient is the correct choice to305
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make favorable changes to each unstable eigenmode. However, there is usually

a handful of vertices with large enough gradients that can be used to modify

each eigenmode. This can be convenient when we have already selected a vertex

for a different mode or when vertex movement is limited beyond the calculated

gradients for mesh modification. This vertex selection method will require the310

solution to the eigenproblem and can be computationally demanding. As a re-

sult, we adopt a different approach to vertex selection presented by [1] which

avoids any unnecessary numerical overhead by cleverly employing the unstable

numerical eigenvectors in the solution.

The unstable numerical eigenvectors are highly local to certain areas in the315

mesh with only a few non-zero values [1]. As a result, these vectors are pointing

to local areas on the mesh in which the unstable mode is growing out of control

and resulting in solution divergence. This fact can be used for vertex selection

on the mesh at a small computational cost. In this approach, we lay out the

absolute values of the unstable numerical eigenvector on the mesh and for each320

vertex, the sum of values in the adjacent cells is computed as a selection proxy.

Our past experiments [1] have shown that this vertex-centered vector usually

points directly to the vertex that has the largest eigenmode gradient. This

approach results in the selection of a single vertex to modify each unstable

solution mode.325

The vertex selection procedure is depicted for an example Burger problem

in Figure 3. Figure 3a shows the absolute value of the sole unstable DMD

eigenvector in the simulation. This vector is highly local to a certain area on

the mesh in which the solution mode experiences the largest growth rate. The

summation of DMD vector values in the adjacent cells of each vertex is shown330

in Figure 3b. The maximum value of this new vector is pointing to a vertex

shown with a white circle which is selected for modification in the next steps

of the presented methodology. In fact, this vertex has the largest eigenvalue

gradient for the eigenmode in question. Note that in calculating the vertex-

centered vector of Figure 3b we ignore the small components in the DMD vector335

(magnitude smaller than 5% of the maximum entry).
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(a) Absolute value of DMD eigenvector
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(b) Selection weight measure

Figure 3: Vertex selection in a Burgers problem (note the logarithmic colormap scale) [9]

In the next test, the absolute value of the DMD eigenvector corresponding

to an unstable mode in an Euler problem is shown in Figure 4a. Once again,

the selected solution mode is highly localized on the mesh pointing to the area

where numerical instabilities are emerging. The vertex-centered selection weight340

measure is computed for the significant entries of the DMD vector and shown in

Figure 4b. The vertex indicated with a white circle is selected for modification

in the mesh optimization process.
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Figure 4: Vertex selection in an Euler problem (note the logarithmic colormap scale) [9]

3.3. Movement Vector Calculation

After the vertex selection stage, proper modification vectors need to be cal-345

culated to adjust the mesh for favorable changes to the eigenmodes in question.

Prior studies utilized the gradients of eigenvalues with respect to vertex move-

ment for this purpose which was computationally expensive, requiring eigen-

vectors and partial recalculation of the Jacobian matrix. In the current study,

however, we utilize the gradients of the Jacobian matrix entries directly to find350

proper modification vectors. According to the Gershgorin circle theorem [19],

the set of eigenvalues of a given matrix is located inside the union of a collection

of specific discs in the complex plane. This theorem associates a disc to each

row of the matrix centered at the diagonal entry with a radius equal to the sum

of absolute values of the off-diagonal entries. Equation 15 presents a simple355

Jacobian matrix E, the Gershgorin circles of which are presented in Figure 5.

Without any knowledge of the exact eigenvalues of this matrix and only look-

ing at the union of the circles, we conclude that this matrix may have some

eigenvalues with positive real parts. Such eigenvalues correspond to unstable

solution modes with positive exponential growth.360
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Figure 5: Example Gershgorin circles

In the novel movement vector calculation scheme, we aim to improve the

eigenspectrum of the Jacobian matrix by making favorable changes to the Ger-

shgorin circles associated with the problematic cells. In other words, proper

changes to vertex location are calculated to push the circles on the right side of

the spectrum as far to the left as possible. This approach does not guarantee365

that all the problematic eigenmodes are going to lie in the left half-plane after

mesh modification but it is a positive step toward numerical stability. Signifi-

cant computational savings can be achieved through this novel approach which

is an improvement over the previous studies. This technique essentially boils

down to changing the mesh in order to make the Jacobian matrix more diago-370

nally dominant. Reducing the time-step size is a more traditional approach to

fixing numerical instabilities which also results in better diagonal dominance of

the linear system of equations.
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The current approach involves computing the gradients of the diagonal ele-

ments of the Jacobian matrix with respect to vertex movement on the problem-375

atic rows. This method only requires the computation of a few entries in the

Jacobian matrix which makes the approach highly computationally efficient and

avoids forming the entire matrix. To calculate the gradient of the (i, j) entry in

the Jacobian with respect to mesh movement, dJij
dζ

, we use the finite difference

method as,380

dJij
dζ

≈ ∂Jij
∂ζ

=
Jij(ζ + δζ)− Jij(ζ)

δζ
(16)

3.4. Vertex Modification

At this point, the required information for proper vertex modification to

improve the numerical stability or convergence behavior of the simulation is

available. To prevent mesh tangling we set a movement limit for each selected

vertex which can be as simple as a fixed fraction of the length of the short-385

est incident edge on the vertex in question. In the case of vertices located on

the boundary, the modification vector cannot be allowed to alter the bound-

ary geometry. Consequently, in such cases, the vertex movement needs to be

restricted to preserve the geometrical and topological features of the domain.

Given these considerations, the gradient vector can be utilized to strategically390

adjust the location of the selected vertices to improve diagonal dominance in

the Jacobian matrix.

3.5. Algorithm

An overview of the presented mesh optimization approach is shown in Fig-

ure 6. The details of each computational module in this algorithm can be found395

in its respective section presented in Sections 3.1 to 3.4. To summarize, at each

solution iteration, DMD is performed on a collection of the most recent solu-

tion update vectors. The number of vectors in use affects the computational

complexity of the optimization application. However, according to our experi-

ments, this number is not a function of the degrees of freedom in the solution.400

To show this, we have performed mesh optimization on large problems with
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Figure 6: Overview of the mesh optimization approach [9]

around 2.17 × 107 degrees of freedom using only the 10 most recent solution

update vectors.

In the next step, unstable solution modes are automatically identified based

on their magnitude. In the case of unstable modes, we continue the mesh op-405

timization process by finding the DMD eigenvectors. Using the eigenvectors,

certain vertices are identified on the mesh for alteration, and modification vec-

tors are calculated. Lastly, using the previous computations we can perform

mesh optimization and continue the solution or restart from the initial condi-

tions.410
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4. Results

We have demonstrated the efficiency of the algorithm by implementing mesh

optimization on diverse test cases, highlighting the improvements in residual

history. Furthermore, we have applied this method seamlessly to Ansys Fluent

simulations without access to the source code, preserving the software’s original415

architecture. The results underscore the strength and viability of this algorithm

when integrated with third-party flow solvers. Additionally, our study show-

cases its effectiveness in 3D turbulent simulations. As a result, Sections 4.1

to 4.3 utilize our in-house flow solver in conjunction with the presented mesh

optimization algorithm while Section 4.4 utilizes Ansys fluent simulations for420

mesh optimization.

4.1. Burgers Problem

The non-linear inviscid Burgers problem, ∂u∂y +u∂u∂x = 0, is selected as a first

test case. This problem is solved on a π × 0.5 rectangular channel with the

boundary conditions presented in Figure 7a. An example of the mesh used for425

the solution of this problem using finite-volume methods is presented in Fig-

ure 7b. This mesh is considered high-quality according to the traditional mesh

quality guidelines. Only 10 most recent solution vectors are used in the DMD

process for all the tests in this section. The solution to this problem is per-

formed using the Crank-Nicolson time-stepping method. The original solution430

on a mesh with 500 control volumes is unstable. Unstable DMD modes are

identified (magnitude larger than 1.0) at iteration 12 of the solver. The applica-

tion of our novel mesh modification approach at this iteration and restarting the

simulation results in the full stabilization of the solution. The residual history

of this problem before and after a single optimization iteration is presented in435

Figure 8a. The original and optimized meshes are presented in Figure 8b which

shows that the location of a single vertex is modified for a stable problem. As

depicted, the methodology presented herein results in solution convergence with

around half as many iterations compared to the work of Zandsalimy and Ollivier-
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Gooch [1]. Unless otherwise indicated, by iteration we refer to the number of440

non-linear solution iterations of a given simulation in this study.

y

x

0.5

0.0

π0.0

u(x, y)

u
(0
,y
)
=

0

u
(π
,y
)
=

0

∂u

∂y
= 0

u(x, 0) = − sin(x)

(a) The physical domain and boundary conditions

0
2
x

0.00

0.25

0.50

y

(b) An example of the mesh

Figure 7: The domain, boundary conditions, and mesh for the solution to the Burgers problem

[1]
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Figure 8: Mesh optimization in a Burgers problem on a mesh with 500 cells

The next solution to the Burgers problem is performed using the Crank-

Nicolson time-stepping method on a mesh with 1100 control volumes. This

problem contains multiple unstable modes which required multiple iterations

of the optimization approach for full stability. Unstable DMD eigenvalues are445

automatically detected at iterations 13, 21, 22, 28, and 35. These five opti-

mization iterations result in the modification of five vertices on the mesh for

full stability. The residual history before and after optimization is presented

in Figure 9a. The original and optimized meshes are presented in Figure 9b

which shows the locations of five different vertices that are modified for a stable450

problem. As depicted, the methodology presented herein results in solution con-

vergence with around 1
7 as many iterations compared to the work of Zandsalimy

and Ollivier-Gooch [7].
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Figure 9: Mesh optimization in a Burgers problem on a mesh with 1100 cells

The next Burgers problem is solved using the Crank-Nicolson time-stepping

method on a mesh with 17500 cells. This problem is stable but some slow455

converging modes are present in the simulation. Numerical modes with mag-

nitudes larger than 0.96 are detected automatically at iterations 105, 154, and

160. Performing the optimization at these iterations results in the residual his-

tory presented in red in Figure 10a which depicts convergence in around 1
3 of

the solution iterations. The locations of 4 vertices are modified in this case,460

one of which is indicated in Figure 10b. Once again, we note that only the last

10 solution update vectors are used in the mesh optimization of this problem

containing 17500 degrees of freedom.
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Figure 10: Mesh optimization in a Burgers problem using Implicit Euler time integration on

a mesh with 17500 cells

4.2. Advection

The 3D Advection problem, ∂ψ∂t +u ·∇ψ = 0, is used as the next test case in465

the current study. Here, ψ is a scalar, u = 1.0e⃗i+0.0e⃗j +0.0e⃗k is a 3D velocity

field, and ∇ = ∂
∂x e⃗i+

∂
∂y e⃗j+

∂
∂z e⃗k. This problem is solved in a 3×1×1 channel

using the Crank-Nicolson time-stepping method. For all the tests in this section,

only 10 solution update vectors are used in the DMD computations. The first

test case is solved on a mesh with 500 tetrahedral cells which is unstable as470

shown in Figure 11 in black. In this case, unstable DMD modes are identified

at iteration 11 of the solver. The mesh optimization algorithm is applied at this

iteration modifying a single vertex which stabilizes the solution. The residual

history before and after optimization is presented in Figure 11.
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Figure 11: Residual history in mesh optimization of an Advection problem with 500 cells

The next simulation is performed on a mesh with around 30000 cells which is475

originally unstable. First unstable solution modes are detected at iteration 11 of

the solver. The mesh optimization approach results in modifying the location of

one vertex on the mesh and fully stabilizes the simulation. The residual histories

for this test case are shown in Figure 12.
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Figure 12: Residual history in mesh optimization of an Advection problem with 29100 cells

4.3. Euler Problem480

The Euler problem is selected as the next test case in the present study which

is solved around the NACA 0015 airfoil inside a circular domain with a radius
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of 500 chords. The flow variables are nondimensionalized with the free-stream

conditions for a general solution in non-dimensional form. In the initial solution

for this problem, free-stream density ρ∞ is set to 1.0, velocity in (x, y) direction485

to M∞(cos(α), sin(α)), and free-stream pressure P∞ to 1
γ . In these relations,

M∞ is the free-stream Mach number, α is the angle of attack, P∞ is the resulting

pressure during isentropic expansion to M∞, and γ is the heat capacity ratio of

the fluid. Further in this problem, stagnation values are set from the isentropic

relations. Only 10 most recent solution vectors are used in the DMD process490

for all the tests in this section. The first mesh to be tested contains 600 control

volumes. The simulation using the Crank-Nicolson time-stepping method with

CFL = 1.0, M∞ = 0.5 and α = 0 is unstable. An unstable DMD mode with a

magnitude larger than 1.0 is detected at iteration 103 of the solver. Performing

the optimization at this iteration results in the residual history presented in red495

in Figure 13a. The optimized mesh is presented in Figure 13b depicting the

modification of a single vertex.

0 200 400 600 800 1000 1200
Iteration

10 10

10 8

10 6

10 4

10 2

100

102

104

R
es

id
ua

l

After Optimization
Before Optimization

(a) The residual history

0.00 0.25 0.50 0.75 1.00
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

y

(b) Mesh modification

Figure 13: Mesh optimization in an Euler problem using Crank-Nicolson time integration on

a mesh with 600 cells

This problem is solved on the same mesh using the Implicit Euler time-

stepping method. CFL evolution strategies [20] are utilized to increase the
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convergence rate of the problem. In this case, unstable DMD modes are detected500

at iteration 13 of the solver. Performing the optimization at this point results

in the residual history presented in red in Figure 14a. The modified mesh is

presented in Figure 14b. As seen, only a single vertex is modified to reach a

fully stabilized solution.
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Figure 14: Mesh optimization in an Euler problem using Implicit Euler time integration on a

mesh with 600 cells

The next Euler problem is solved using the Implicit Euler time-stepping505

method on a mesh with 7600 cells. A few unstable DMD modes are detected at

iteration 11 of the solver. Performing the optimization at this iteration results

in the residual history presented in Figure 15a. The optimized mesh is presented

in Figure 15b depicting the modification of 9 vertices near the leading edge of

the airfoil. Once again, we note that only 10 solution update vectors are used510

for mesh optimization in this problem containing 30400 degrees of freedom.
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Figure 15: Mesh optimization in an Euler problem using Implicit Euler time integration on a

mesh with 7600 cells

4.4. Ansys Fluent

The presented mesh optimization approach offers a significant advantage

due to its non-invasive nature when integrated with external solvers. Our pri-

mary objective was to develop an algorithm with seamless integration without515

necessitating any modifications to the underlying flow solver architecture. This

crucial goal has been successfully accomplished in our current study.

In our experimentation, the mesh optimization approach was applied to An-

sys Fluent version 2023 R2, showcasing its effortless integration. Notably, this

process did not require access to the source code. In simpler terms, anyone520

with only a valid user license for Ansys Fluent software can replicate the results

demonstrated in this study. This demonstrates the accessibility and usability

of the presented approach for a wide range of industrial applications without

delving into complex code modifications. Note that the current section includes

Ansys Fluent specific nomenclature (e.g. boundary condition types and turbu-525

lence models) that are explained in the software manual.

The lid-driven cavity is chosen as the first test case in Ansys Fluent. Fig-

ure 16a shows the 10m × 10m solution domain of this simulation in which the

black lines are set to be stationary no-slip walls and the red line is set to be
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a moving no-slip wall. Figure 16b depicts a typical triangular mesh that was530

used for the solution. The cavity lid is moving at a constant velocity from left

to right. Fluid density and viscosity are both constant, set to 1.225 kg
m3 and

1.7894× 10−5 kg
m·s , respectively.
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Figure 16: Solution domain and mesh for a lid-driven cavity problem

In the first experiment, the top wall moves at a velocity of 1m
s to the right,

giving a Reynolds number of 685,000. The viscosity is set to laminar which is not535

a correct physical simulation given the Reynolds number. In this case, the mesh

includes 814 triangular cells, 1261 faces, and 448 nodes generated with the Ansys

Meshing software. As seen in Figure 17a presented in black, the original solution

is converging. DMD is performed on the latest 10 solution update vectors to

identify solution modes. In the first optimization iteration, the second dominant540

DMD mode is used to select a single vertex for modification at iteration 200 of

the solver. We should note that, in this case, the dominant mode at iteration

200 has a physical behavior that makes it infeasible for vertex selection and

optimization. This optimization iteration results in the modification of the

single red vertex in Figure 17b with the improved residual history depicted in545

Figure 17a. In the next optimization iteration, the second dominant DMD mode

is used for vertex selection at iteration 360 of the new solution. This process
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results in the modification of the blue vertex presented in Figure 17b with the

improved residual history depicted in Figure 17a.
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Figure 17: Ansys Fluent mesh optimization in a 2D cavity problem

The same problem is used for the next test case with a few modifications.550

The k − ω SST turbulence model is used for a proper turbulence modeling

simulation. DMD is performed on the latest 10 solution update vectors to

identify solution modes. At iteration 400, the dominant DMD mode is used for

mesh optimization to modify the vertices presented in Figure 18b. The final

residual in this case undergoes the improvement depicted in Figure 18a.555
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Figure 18: Ansys Fluent mesh optimization in a 2D cavity problem

The same simulation is performed with the velocity of the top wall set to

0.1m
s with the k− ω SST turbulence model. In this case, the Reynolds number

is 68,500. DMD is performed on the latest 10 solution update vectors to identify

solution modes. At iteration 100, the second dominant DMD mode is used for

mesh optimization to modify the vertices presented in Figure 19b. The final560

residual in this case undergoes the improvements shown in Figure 19a.
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Figure 19: Ansys Fluent mesh optimization in a 2D cavity problem

31



A finer triangular mesh is generated to solve this problem with 5194 cells,

7891 faces, and 2698 nodes. The top wall velocity is set to 10.0m
s for a Reynolds

number of 6,850,000. Once again, the k − ω SST turbulence model is used in

the simulation. DMD is performed on the latest 10 solution update vectors to565

identify solution modes. At iteration 128, the dominant DMD mode is used for

mesh optimization to modify the single vertex presented in Figure 20b. The

final residual in this case undergoes the improvements depicted in Figure 20a.

As seen here, the optimized mesh contains a single cell with an internal angle

of around 180 degrees which is considered low-quality by traditional metrics.570

Zandsalimy and Ollivier-Gooch [1] studied this behavior and presented examples

of better-performing numerical simulations on meshes that are considered low-

quality by traditional measures in comparison to high-quality meshes. The

numerical simulation performance on a given mesh depends strongly on the

physics, discretization scheme, boundary conditions, physical instabilities in the575

solution, and so on. Consequently, it is implausible to make a concrete decision

on the numerical stability and convergence, solely based on traditional mesh

quality measures. Further, the counter-example of Figure 20 also shows the

deficiency of such traditional quality metrics in mesh generation for numerical

stability and convergence.580
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Figure 20: Ansys Fluent mesh optimization in a 2D cavity problem
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A modified lid-driven cavity is chosen as the second test case in Ansys Fluent.

Figure 21a shows the 10m × 10m solution domain of this simulation with a 2m

diameter hole punched in the middle. Here, the black lines are set to stationary

no-slip walls and the red line is set to moving no-slip wall. Figure 21b depicts a

typical triangular mesh that was used for the solution. The cavity lid is moving585

at a constant velocity from left to right. Fluid density and viscosity are both

constant, set to 1.225 kg
m3 and 1.7894× 10−5 kg

m·s , respectively.

D 2m

10m

10m

(a) The physical domain

4 2 0 2 4
x

4

2

0

2

4

y

(b) An example of the mesh

Figure 21: Solution domain and mesh for a modified lid-driven cavity problem

For this test case, the top wall moves at a velocity of 1m
s to the right for a

Reynolds number of 685,000. The k − ω SST turbulence model is used for this

simulation. The mesh includes 5209 triangular cells, 7929 faces, and 2720 nodes590

generated with the Ansys Meshing software. DMD is performed on the latest 10

solution update vectors to identify solution modes. One optimization iteration

is performed on the dominant solution mode at iteration 350 of the solver. This

optimization iteration results in the modification of the single vertex presented

in Figure 22b. The improved residual history after mesh optimization is shown595

in Figure 22a.
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Figure 22: Ansys Fluent mesh optimization in a modified 2D cavity problem

The 3D lid-driven cavity is chosen as the third test case in Ansys Fluent.

The domain is a simple 10m × 10m × 10m cube with the top wall moving at a

constant velocity. The boundary conditions are set to no-slip moving wall for

the cavity lid and no-slip stationary wall for the 5 remaining sides of the cube.600

The mesh consists of 39812 tetrahedral cells, 82105 faces, and 7951 nodes. Fluid

density and viscosity are both constant, set to 1.225 kg
m3 and 1.7894 × 10−5 kg

m·s ,

respectively.

The moving wall velocity is set to 0.001m
s for a Reynolds number of 685.

The k−ω SST turbulence model is used for this simulation. DMD is performed605

on the latest 10 solution update vectors to find the solution modes. Mesh

optimization is performed at iteration 100 of the solver on the dominant DMD

mode. During mesh optimization, in this case, the locations of 6 vertices on the

mesh are modified. Figure 23 shows the residual history before and after the

application.610
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Figure 23: Ansys Fluent mesh optimization in a 3D cavity problem

Next, the lid velocity is increased to 0.01m
s for a Reynolds number of 6,850.

The k−ω SST turbulence model is used for this simulation. DMD is performed

on the latest 10 solution update vectors to find the solution modes. The first

mesh optimization iteration is performed at iteration 100 of the solver on the

dominant DMD mode to modify the location of 19 vertices. The oscillations615

in the residual history undergo a frequency reduction and amplitude increment

depicted in Figure 24 in red. The next mesh optimization iteration is performed

on the new solution at iteration 100 of the solver to modify the locations of 25

vertices on the mesh. The residual history after this optimization iteration is

presented in Figure 24 in blue. The final optimization iteration is performed at620

iteration 100 of the new solution to modify the locations of 15 vertices. As seen

in Figure 24 in green, the final residual is substantially improved over the initial

solution.
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Figure 24: Ansys Fluent mesh optimization in a 3D cavity problem

A compressible flow problem is selected as the next test case in Ansys Fluent.

Figure 25a shows the solution domain of the simulation with the black lines set625

to zero shear walls and the red lines set to pressure far-field boundary condition

at Mach 1.2. Figure 25b depicts a typical triangular mesh that was used for

this simulation. The ideal gas law is applied to the fluid for a compressible flow

simulation with constant viscosity of 1.7894 × 10−5 kg
m·s , specific heat capacity

Cp of 1006.43 J
kg·K , thermal conductivity of 0.0242 W

m·K , and molecular weight of630

28.966 kg
kmol .

The Ansys Fluent version 2023 R2 used in the current study does not sup-

port the Adjoint solution for inviscid flows which is required to find the Jacobian

matrix. Consequently, we are not able to test the presented stability improve-

ment approach on the current compressible flow case using an inviscid solution.635

Although this simulation may deviate from physical accuracy, it serves as a

substantiation of the proposed stability improvement methodology. Notably, it

demonstrates the methodology’s efficacy in enhancing the solution with mini-

mal computational overhead. Figure 25c shows the contours of Mach number

in the converged solution for this problem.640
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Figure 25: Solution domain and mesh for a compressible flow problem

In this case, the triangular mesh includes 3348 cells, 5119 faces, and 1772

nodes with the k − ω SST turbulence model selected for the solution. DMD is

performed on the latest 10 solution update vectors to identify solution modes.

One optimization iteration is performed on the dominant solution mode at iter-
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ation 300 of the solver to modify the location of 3 vertices on the mesh shown in645

Figure 26b. These vertices are located just downstream of the shock wave. The

improved residual history after mesh optimization is depicted in Figure 26a.
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Figure 26: Ansys Fluent mesh optimization in a compressible flow problem

An incompressible 3D turbulent flow around a sedan car is selected as the

next test case in Ansys Fluent. Figure 27 shows the front and side views of

the solution domain with the dashed red line used as a symmetry plane in the650

simulation. The car body, wheels, and the floor plane are set to no slip walls.

The velocity inlet boundary condition is set to 27.8m
s in the +y direction and

the opposing boundary is set to pressure outlet. The remaining planes are

all set to symmetry boundary condition. The simulation Reynolds number is

8,700,000 and the k − ω SST turbulence model is used. Figure 28 shows the655

mesh on the symmetry plane. This unstructured 3D mesh includes 1,806,224

prism cells, 1,811,856 tetrahedral cells, 8,252,872 faces, and 1,266,920 nodes.

The highest aspect ratio for the cells in this mesh is 172. This large-scale

problem includes 21,708,480 degrees of freedom and clearly depicts the efficacy

and scalability of our presented methodology to substantial CFD simulations660

and anisotropic meshes. Fluid density and viscosity are both constant, set

to 1.225 kg
m3 and 1.83 × 10−5 kg

m·s , respectively. DMD is performed on only the

38



latest 10 solution update vectors to identify the dominant solution modes which

is remarkable considering the problem size of 21.7 million degrees of freedom.

One optimization iteration is performed in this case which results in the residual665

history improvement presented in Figure 29a. Figure 29b depicts the history

of drag force on the body and the wheels of this vehicle. As seen, the result is

slightly different in the new solution with smaller oscillations. Figure 30 shows

the contours of skin friction coefficient before and after mesh optimization in

this test case. As depicted, there is a similar pattern between the two solutions670

with little noticeable differences. The minimum skin friction coefficient after

mesh optimization is slightly lower than before.
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Figure 27: Solution domain for a large-scale 3D turbulent automotive problem
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(a) Full view

(b) Zoom view

Figure 28: Symmetry plane mesh for a large-scale 3D turbulent automotive problem
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Figure 29: Ansys Fluent mesh optimization in a large-scale turbulent automotive problem
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(a) Before optimization

(b) After optimization

Figure 30: Skin friction coefficient during mesh optimization in a large-scale turbulent auto-

motive problem

The NASA Common Research Model (CRM) is selected as the next test

case in this study. The High-Lift Common Research Model (CRM-HL) is a

geometry set developed based on the original CRM model to enable high lift675

configurations representative of those found on modern commercial airliners.

This model introduces complex high-lift devices, brackets, fairings, and seal-

ing between elements to the CRM model. An isometric view of the CRM-HL

wing-body-pylon-nacelle geometry along with the high-lift devices is shown in

Figure 31. The details of this geometry and configurations are given in the work680

of Lacy and Clark [21].
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Figure 31: CRM-HL wing-body-pylon-nacelle configuration along with high-lift devices iso-

metric view

We use meshes and test cases provided by the fifth AIAA CFD High Lift

Prediction Workshop. Three general test cases are presented including Case 1

for verification, Case 2 for configuration build-up, and Case 3 for the study of

Reynolds number effects. Case 1 is a wing-body configuration geometry with685

no high-lift devices attached. This geometry includes a cuboid computational

domain with dimensions that extent [−1651, 1651] meters in x, [0, 1651] meters

in y, and [−1651, 1651] meters in z. Symmetry is specified at the y = 0 plane

and far-field boundary conditions on Riemann invariants are assigned at all

other far-field boundaries of the domain. The flow is considered compressible690

at Mach 0.2 and 11
◦ angle of attack. The reference static temperature is set to

289.444 Kelvin and the fluid is assumed to be an ideal gas with γ = 1.4. The

walls are set to no-slip solid boundaries with zero heat flux.

As a first test case, the Ansys Fluent solver is set up with the Case 1 wing-

body geometry. Grid 1v from the work of Diskin et al. [22], with 1,051,621695

tetrahedral cells, 21,297 pyramid cells, 1,509,377 prism cells, 5,975,424 faces,

and 956,174 nodes is selected for this test case. The simulation Reynolds number

is 32.7 million and the k−ω SST turbulence model is used for a fully turbulent

RANS simulation. The highest aspect ratio for the cells in this mesh is 4.4734×
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104 and the minimum orthogonal quality metric is 2.1024×10−6. This problem700

includes 18.1 million degrees of freedom.

DMD is performed on only the latest 10 solution update vectors to identify

the dominant solution modes in this large-scale 3D problem. A single opti-

mization iteration is performed in this case and the locations of three vertices

are modified located near the tip of the wing on the top surface indicated in705

Figure 32 with white. This optimization iteration results in half an order of mag-

nitude reduction in the residual history presented in Figure 33a. Figures 33b

and 33c depict the history of lift and drag coefficients on this wing-body con-

figuration. As seen, the results are slightly different in the new solution with

around 0.1% difference for the lift coefficient and around 0.3% difference for710

the drag coefficient. The skin friction coefficient contours on the top surface

of the wing before and after mesh optimization are presented in Figure 34. As

depicted, the skin friction coefficient patterns are similar in both solutions with

small noticeable differences.

Figure 32: The modified vertices during mesh optimization in CRM-HL wing-body configu-

ration
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Figure 33: Ansys Fluent mesh optimization in CRM-HL wing-body configuration
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(a) Before optimization

(b) After optimization

Figure 34: Skin friction coefficient during mesh optimization in CRM-HL wing-body configu-

ration

The same test case is set up with a Reynolds number of 5,600,000 in the715

Ansys Fluent solver. The k − ω SST turbulence model is used for a fully tur-

bulent RANS simulation in this case as well. DMD is performed on only the

latest 10 solution update vectors to identify the dominant solution modes in

this large-scale problem. A single optimization iteration is performed in this

case and the locations of six vertices are modified on the top surface of the wing720

indicated in Figure 35 with white. This optimization iteration results in half an

order of magnitude reduction in the residual history presented in Figure 36a.

Figures 36b and 36c depict the history of lift and drag coefficients on this wing-

body configuration. As seen, the results are slightly different in the new solution

with around 0.1% difference for the lift coefficient and around 0.5% difference725
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for the drag coefficient. The skin friction coefficient contours on the top surface

of the wing before and after mesh optimization are presented in Figure 37. As

depicted, the skin friction coefficient patterns are similar in both solutions with

small noticeable differences.

Figure 35: The modified vertices during mesh optimization in CRM-HL wing-body configu-

ration
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Figure 36: Ansys Fluent mesh optimization in CRM-HL wing-body configuration
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(a) Before optimization

(b) After optimization

Figure 37: Skin friction coefficient during mesh optimization in CRM-HL wing-body configu-

ration

4.5. Computational Cost730

The computational cost of the presented algorithm in conjunction with our

in-house flow solver is presented in the current section. The computational time

is computed in the solution and mesh optimization of an Euler problem on dif-

ferent mesh sizes. These results are quite similar to the test cases performed

in Ansys Fluent with the only difference being the flow simulation times. One735

of the shortcomings of the previous studies on mesh optimization using numer-

ical solution mode enhancement was the high computational complexity which

hinders their approach from being applied to large turbulent simulations. The

current study eliminates the need for eigenanalysis of the Jacobian matrix by

employing Dynamic Mode Decomposition of a small selection of solution up-740
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date vectors. This results in substantial computational savings compared to the

work of [1]. This improvement is depicted with a solid blue line compared to

the dashed blue line in Figure 38a.

As seen, the overall mesh optimization process is much faster in compari-

son to [1], mainly due to the complete elimination of the eigenanalysis module.745

Furthermore, optimization run-time is similar to [7] noting that the DMD Anal-

ysis module in the current work exhibits a smaller growth rate with increasing

degrees of freedom compared to the Residual Analysis module. Furthermore,

the computations concerning Movement Vectors and Flow Solver modules are

similar across the board.750

Further, the run time of our DMD mesh optimization (the box labeled Op-

timization in Figure 6) is the summation of the DMD Analysis (solid blue line)

and Movement Vectors (solid green line) in Figure 38a. This summation is pre-

sented in Figure 38b to compare with the computational run-time of the flow

solver. For different degrees of freedom, this figure depicts the wall time of a755

single DMD mesh optimization in magenta and the run-time of a single solution

iteration in red. As shown, the cost of every iteration of our mesh optimization

approach is smaller than each non-linear solution iteration. As presented in

the current study, usually a single mesh optimization iteration is sufficient to

fully stabilize an unstable simulation or to substantially reduce the number of760

iterations to reach numerical convergence. This confirms the substantial com-

putational savings achieved through our presented methodology for stability

improvement in computational fluid dynamics.
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Figure 38: The optimization time versus degrees of freedom in an Euler problem

5. Conclusion

Novel strategies are unveiled in the current study for mesh optimization of765

finite-volume methods to enhance the residual convergence behavior. A key

feature involves utilizing Dynamic Mode Decomposition of a small collection of

the most recent solution update vectors to identify problematic solution modes.

The automatic unstable mode identification is an important enhancement over

the previous mesh optimization algorithms. By employing DMD eigenvectors770

associated with these modes appropriate vertices are selected and modification

vectors are calculated, leading to favorable outcomes. Further, it is shown that

the presented mesh optimization methodology is non-invasive in nature and can

be used in conjunction with external flow solvers without any access to the un-

derlying software architecture. To validate this, the presented algorithm is used775

in conjunction with Ansys Fluent simulations with the results depicting substan-

tial enhancements in the residual history across various problems. The current

work pioneers the application of the presented algorithm to fully turbulent sim-

ulations to show its robustness and effectiveness. Further, we have shown that

minor alterations to a small collection of vertices on the mesh can make con-780

siderable changes to the aerodynamic characteristic predictions. Consequently,
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our study raises an important concern about traditional mesh quality metrics

and the convergence criteria of numerical simulations. We believe that the CFD

community needs to define more rigorous definitions of numerical convergence

and mesh quality for further advancements in the field.785
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